首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on the interaction between bacteria and harmful algal bloom species have mostly considered the bacteria in the bulk solution. Here, we document the abundance and mode of attachment of bacteria growing on the cell surface of the domoic acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle in culture, compared with diatoms in field samples. The epiphytic bacteria were examined by scanning electron microscopy to visualize their morphology and mode of attachment. Two P. multiseries cultures were studied: clone CLN-1 and sub-clone CLN-1-NRC; the latter had been maintained in another laboratory for 2 years. Each of these P. multiseries cultures exhibited a clearly different assemblage of epibiotic bacteria, even though both originated from the same parent culture. The bacterial diversity was greater in clone CLN-1 (nine distinct morphotypes seen) than in sub-clone CLN-1-NRC (six morphotypes). The former clone also produced more domoic acid than the latter. There was a succession of bacterial morphotypes as well as an increase in the number of epiphytic bacteria per diatom cell during the progression from exponential to stationary phase. The most diverse and common morphotypes were rod-shaped cells (e.g. a Caulobacter-like bacterium attached by a discoid holdfast). Epibionts showed a preference for attachment at specific regions of the host diatom frustule, e.g. the raphe or cingulum, locations where organic matter may be extruding from the diatom cell. Most diatom cells carried only one to five bacteria, and up to ca. 60% of the intact diatom cells (although intact cells themselves were infrequent) were still free of epibiotic bacteria at the end of the 31-day batch culture experiment. Sequencing of the SSU rRNA gene showed that five of the eight bacterial strains isolated from the P. multiseries cultures were members of the Alphaproteobacteria, three of the Gammaproteobacteria and one of the Bacteroidetes. A morphologically diverse assemblage of epibiotic bacteria was also found on both centric and pennate planktonic diatoms in natural coastal waters. Of the eight morphotypes recorded, all but two were also found in the cultures. Relatively fewer wild diatom cells carried bacteria compared to cells in culture. We hypothesize that the diversity and abundance of epiphytic bacteria may explain some of the variability seen in the production of DA by different P. multiseries clones, and should be considered as another important and controllable variable that influences diatom cell physiology.  相似文献   

2.
The vitamin B12 requirement of several marine diatoms can be satisfied in B12?limited laboratory cultures by heterotrophic marine bacteria isolated from the same waters and from sediments. The bacteria can utilize diatom excretory products, or the remains of dead diatom cells, in the production of the vitamin. The growth of 12 B121? requiring diatoms (7 genera) in mixed cultures with 14 different bacteria (without added B12) was compared to the growth of those same diatoms in axenic cultures with excess added B12. Diatom growth was generally rapid in the first few days, followed by sustained, slower growth. The diatom yields in mixed cultures ranged from 0.8 to 84% of the yields in axenic cultures with added B12. In a detailed study of one mixed culture, increases in diatom densities were paralleled by increases in cell densities of the bacterium during the first few days of exponential diatom growth. During the period of slow diatom growth, when diatom densities oscillated but steadily increased, the decreases in diatom densities were associated with increased bacterial growth. This suggests that death of a fraction of the B12-limited diatom population releases sufficient organic matter to stimulate growth of the bacteria and their subsequent excretion of B12; this B12 in turn stimulates further growth of the diatoms. Diatom-bacteria interactions leading to the production of B12 may be important in maintaining viable populations of B12-requiring diatoms in nutrient-poor waters during periods between blooms, when conditions are unfavorable for rapid growth.  相似文献   

3.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

4.
In this study, we describe different combinations of physical separation and antibiotic treatment to remove associated bacteria from freshwater diatoms. Diatoms were purified either from natural epilithic biofilms or from unialgal cultures. We determined that for most strains, different purification procedures have to be combined individually. In a new approach, we show that for some diatom strains, the substitution of associated aquatic bacteria by an antibiotic‐sensitive Escherichia coli strain and subsequent treatment with antibiotics may be a successful strategy to obtain axenic diatom cultures. Axenic diatom cultures are essential to study the physiology and biochemistry of individual strains as well as their responses to environmental changes without interference of accompanying bacteria.  相似文献   

5.
Marine benthic diatoms growing in biofilms on sediment surfaces generally occur associated with heterotrophic bacteria, whereas modern molecular techniques and analyses of species‐specific physiology create a demand for axenic cultures. Numerous benthic diatoms were isolated from surface sediments during a monitoring of the Solthörn tidal flat (southern North Sea, Germany) from May 2008 to May 2009. Of these, around 50% could be purified from the accompanying heterotrophic bacteria using different antibiotics combined with physical separation methods (vortexing, ultrasound). Overall, seven different antibiotics were tested at different concentrations, and a best working protocol was developed. The axenic strains were stable on average for only around 15 months, indicating a symbiotic interaction between the benthic diatoms and the associated bacteria. While most short‐term effects during the purification process were restricted to differences in growth rates among xenic and axenic diatom strains, long‐term cultivation led to distinct changes in cell volumes and growth characteristics of the axenic strains.  相似文献   

6.
The effect of bacteria on the solubilization of silica in diatom frustules   总被引:2,自引:0,他引:2  
P atrick , S heila & H olding , A.J. 1985. The effect of bacteria on the solubilization of silica in diatom frustules. Journal of Applied Bacteriology 59 , 7–16.
Natural bacterial populations in samples of water from Loch Leven and Lough Neagh increased the rate of solubilization of frustule silica from an axenic Cyclotella meneghiniana culture, compared with sterile autolysis, at 25C. In the inoculated cultures 50–60% of the silica was solubilized over a period of 30 d. Bacterial populations in Loch Leven water also enhanced the solubilization of silica from non-axenic cultures of Asterionella formosa, Tabellaria flocculosa, Navicula pellicu-losa and C. meneghiniana , compared with control cultures sterilized with mercuric chloride. Similar results were obtained with Lough Neagh populations incubated with A. formosa . In comparison with untreated cells, the treatment of diatom cells with ultra-sonication did not increase the release of silica. Pure cultures of bacteria from Loch Leven water enhanced the release of silica from non-axenic A. formosa and axenic C. meneghiniana compared with sterile control treatments. The variation in the ability of cultures to solubilize the frustule silica appeared to be related to their potential to produce hydrolytic enzymes. Natural populations of Loch Leven and Lough Neagh water bacteria and certain bacterial cultures caused the diatoms to aggregate, which did not enhance the release of silica.  相似文献   

7.
盐生植物碱蓬二型果实表生细菌的群落组成及促生属性   总被引:1,自引:0,他引:1  
【背景】碱蓬(Suaeda glauca Bunge)主要生长于含盐碱土壤,具有果实(种子)二型现象,而种子栖居有众多微生物,它们对种子萌发和幼苗建成具有重要影响。【目的】对碱蓬异型果实表生细菌的群落组成及相关细菌的促生属性进行观察研究,探讨不同类型果实表生细菌的群落组成及相关细菌的促生功能属性是否存在差异。【方法】利用纯培养方法对碱蓬二型果实的表生可培养细菌进行分离纯化,基于16S rRNA基因序列分析初步确定分离菌株的系统发育地位,并对获得菌株进行固氮、溶磷、解钾、产铁及产IAA能力的定性检测。【结果】碱蓬二型果实具有不同的表生细菌群落组成及分布比例,A型果实表生细菌分属于3纲15属,其优势属组成主要是短小杆菌属(34.33%)、芽孢杆菌属(13.43%)和泛菌属(10.45%);B型果实表生细菌分属于4纲20属,其优势属组成主要是短小杆菌属(12.77%)、芽孢杆菌属(17.02%)和冰冻小杆菌属(14.89%)。碱蓬二型果实的表生细菌多样性指数也存在差异,A型果实的Shannon多样性指数、Margalef丰富度指数和Shannon均匀度指数显著低于B型果实;而A型果实的Berger-Parker优势度指数显著高于B型果实。碱蓬二型果实表生细菌在固氮、溶磷、解钾、产铁及产IAA能力等促生属性上的菌株分布比例存在不同变化趋势,A型和B型果实均具有较高比例固氮菌株及较低比例溶磷菌株;但在解钾菌株和产IAA菌株分布比例上具有不同变化趋势,A型果实的解钾菌株所占比例显著高于B型果实,而产IAA能力菌株所占比例显著低于B型果实。【结论】盐生植物碱蓬具有明显不同的2种类型果实,其不同类型果实具有不同的表生细菌群落组成及分布比例,且在促生功能菌株的分布上也存在不同变化趋势。  相似文献   

8.
The lipid and hydrocarbon composition of natural populations of diatom communities collected during the austral spring bloom of 1985 in the sea-ice at McMurdo Sound, Antartica was analyzed by TLC-FID, GC and GC-MS. Sea-ice diatom communities were dominated by Amphiprora sp., Nitzschia stellata Manguin and Berkeleya sp. at Cape Armitage; N. stellata, Amphiprora, Pleurosigma, N. kerguelensis (O'Meara) Hasle and some small centric diatoms adjacent to the Erebus Ice Tongue; and Porosira pseudodenticulata (Hustedt) Jouse at Wohlschlag Bay. Lipid distributions of the sea ice diatom communities from the Cape Armitage and Ereus sites were characterized by high concentrations of tracylaglecycerol (triacylglycerolplar lipid = 1.0 to 1.5). The hydrocarbon n-C21:6, common in temperate diatoms, and an isoprenoid C25 diunsaturated alkene were the dominant hydrocarons detected at these two sites. Hydrogenation of the C25 diene produced the known alkane 2, 6, 10, 14-tetramethyl-7- (3-methylpentyl)-pentadecane. The C25 diene is one of several structurally related hydrocarbons reported in many estuarine, coastal and ocean ic sediments. We propose that certain species of diatoms are a likely source of these alkenes in sediments. The first reported biological occurrence of the C25 diene in the green seaweed Enteromorpha prolifera may have been due to the presence of epiphytic microalgae in the field sample analysed.  相似文献   

9.
Jung  Min-Min  Hagiwara  Atsushi 《Hydrobiologia》2001,(1):123-127
Inconsistent results have been obtained on the population growth of Brachionus rotundiformis and Tigriopus japonicus, when results from single-species and two-species mixed cultures are compared. Bacteria growth was not regulated in these experiments, which could be the cause for this. In order to test this possibility, we conducted similar experiments under axenic and synxenic (with presence of one species of bacteria) conditions. The population growth of B. rotundiformis was suppressed by the presence of T. japonicus in axenic cultures. T. japonicus could not persist in axenic cultures, but its population increased when grown in synxenic cultures. T. japonicus used RT bacteria strain as a food source, while these bacteria were toxic to B. rotundiformis. These results suggest that bacteria can modify the interspecific relationship between B. rotundiformis and T. japonicus.  相似文献   

10.
Summary 1. The dissolved organic matter, especially carbohydrates, released by phytoplanktonic organisms may be ecologically important, through its influence on carbon cycling and microbial diversity. Here axenic cultures of three phytoplanktonic species, Cryptomonas tetrapyrenoidosa (Cryptophyceae), Staurastrum orbiculare (Zygnematophyceae) and Thalassiosira duostra (Bacillariophyceae), were inoculated with a microbial community from the same habitat in which the algae had been isolated (a tropical reservoir). Replicate cultures were not inoculated.
2. In both axenic and co-inoculated cultures, phytoplanktonic density and extracellular carbohydrate production were monitored microscopically and by high performance liquid chromatography with a pulse amperometric detector, respectively. Bacterial population density was also monitored by epifluorescence microscope in the microbial co-inoculated cultures.
3. Both bacterial and phytoplanktonic densities increased for 11 days in all cases. The use of extracellular carbohydrates by bacteria was also showed for all phytoplanktonic species. Of the three species of phytoplankton, only T. duostra had a faster population growth in the presence of bacteria, and reached a higher biomass than in axenic culture.  相似文献   

11.
The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors.  相似文献   

12.
The composition of diatom-associated bacterial communities was studied with 14 different unialgal xenic diatom cultures isolated from freshwater epilithic biofilms of Lake Constance, Germany. A clear dominance of Alphaproteobacteria was observed, followed by Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia. Pure cultures of the diatom Cymbella microcephala, which was found to be dominant in epilithic biofilms in Lake Constance, were cocultivated with six associated bacterial strains. All these bacterial strains were able to grow in C. microcephala cultures in the absence of organic cosubstrates. Diatom growth was generally enhanced in the presence of bacteria, and polysaccharide secretion was generally increased in the presence of Proteobacteria. The monomer composition of extracellular polysaccharides of C. microcephala changed in relation to the presence of different bacteria, but the dominant monomers were less affected. Our results indicate that these changes were caused by the diatom itself rather than by specific bacterial degradation. One Bacteroidetes strain strongly influenced carbohydrate secretion by the alga via extracellular soluble compounds. Biofilms were formed only in the presence of bacteria. Phylogenetic analysis and coculture studies indicate an adaptation of Proteobacteria and Bacteroidetes to the microenvironment created by the diatom biofilm.  相似文献   

13.
Vegetative cell division in diatoms often results in a decreased cell size of one of the daughter cells, which during long‐term cultivation may lead to a gradual decrease of the mean cell size of the culture. To restore the initial cell size, sexual reproduction is required, however, in many diatom cultures sexual reproduction does not occur. Such diatom cultures may lose their viability once the average size of the cells falls below a critical size. Cell size reduction therefore seriously restrains the long‐term stability of many diatom cultures. In order to study the bacterial influence on the size diminution process, we observed cell morphology and size distribution of the diatoms Achnanthidium minutissimum, Cymbella affiniformis and Nitzschia palea for more than two years in bacteria‐free conditions (axenic cultures) and in cultures that contain bacteria (xenic cultures). We found considerable morphological aberrations of frustule microstructures in A. minutissimum and C. affiniformis when cultivated under axenic conditions compared to the xenic cultures. These variations comprise significant cell length reduction, simplification and rounding of the frustule contour and deformation of the siliceous cell walls, features that are normally found in older cultures shortly before they die off. In contrast, the xenic cultures were well preserved and showed less cell length diminution. Our results show that bacteria may have a fundamental influence on the stability of long‐term cultures of diatoms.  相似文献   

14.
Three axenic polar sea ice diatom cultures were subjected to a 30 day simulated summer-winter transition in which light and temperature were decreased and salinity was increased to mimic seasonal changes previously reported for ice-covered polar seas. The diatoms responded to these changes by a reduction in cellular metabolism as indicated by: 1) A decline in growth rate and photosynthetic rate; 2) a decrease in cellular ATP; and 3) the storage and subsequent utilization of endogenous carbon reserves. In addition, heterotrophic potential of the three clones increased by as much as 60-fold. In some cases, the decrease in light intensity characteristic of the onset of polar winter was alone sufficient to trigger these physiological changes.  相似文献   

15.
Numbers of bacteria in annual sea ice increased directly with numbers of algae during the 1981 spring ice diatom bloom in McMurdo Sound, Antarctica. Algae and bacteria in a control site grew at rates of 0.10 and 0.05 day–1, respectively, whereas in an experimentally darkened area neither increased after six weeks. Epiphytic bacteria grew at a rate twice that of the nonattached bacteria and were significantly larger, contributing approximately 30% of the total bacterial biomass after October. The microalgal assemblage was dominated by two species of pennate diatoms, anAmphiprora sp. andNitzschia stellata. Greater than 65% of epiphytic bacteria were associated withAmphiprora sp. after October.N. stellata, however, remained largely uncolonized throughout the study. We hypothesize that microalgae stimulate bacterial growth in sea ice, possibly by providing the bacteria with organic substrates.  相似文献   

16.
A simple method for the isolation of axenic cultures of members of the obligately acetotrophic methanogenic genus Methanosaeta is described. To overcome the competitive advantage obtained by faster growing acetate-utilizing Methanosarcina spp. in batch enrichment cultures, acetone and isopropanol are used as the growth substrates for the enrichment step. Acetone- and isopropanol-utilizing bacteria slowly ferment these substrates to acetate, which allows Methanosaeta spp. to maintain the acetate concentration at levels below the threshold required for growth of Methanosarcina spp. These enrichments eventually develop dense populations of Methanosaeta spp., which can then be separated from contaminating microorganisms to yield axenic cultures.  相似文献   

17.
Lactic acid bacteria isolated from an industrial-scale ethanol fermentation process were used to evaluate sulfite as a bacterial-contamination control agent in a cell-recycled continuous ethanol fermentation process. The viabilities of bacteria were decreased by sulfite at concentrations of 100 to 400 mg liter-1, while sulfite at the same concentrations did not change the viability of the Saccharomyces cerevisiae strain used in this process. Sulfite was effective only in the presence of oxygen. Bacteria showed differences in their susceptibilities to sulfite. Facultatively heterofermentative Lactobacillus casei 4-3 was more susceptible than was obligatory heterofermentative Lactobacillus fermentum 7-1. The former showed higher enzyme activities involved in the production and consumption of hydrogen peroxide than did the latter. The viability of L. fermentum 7-1 could be selectively controlled by hydrogen peroxide at concentrations of 1 to 10 mM. Based on these findings, it is hypothesized that the sulfur trioxide radical anions formed by peroxidase in the presence of hydrogen peroxide are responsible for the control of contaminating bacteria. Sulfite did not kill the yeast strain, which has catalase to degrade hydrogen peroxide. A cell-recycled continuous ethanol fermentation process was run successfully with sulfite treatments.  相似文献   

18.
Phototrophic epilithic biofilms harbour a distinct assemblage of heterotrophic bacteria, cyanobacteria and photoautotrophic algae. Secretion of extracellular polymeric substances (EPS) by these organisms and the physicochemical properties of the EPS are important factors for the development of the biofilms. We have isolated representative diatom and bacteria strains from epilithic biofilms of Lake Constance. By pairwise co-cultivating these strains we found that diatom growth and EPS secretion by diatoms may depend on the presence of individual bacteria. Similar results were obtained after addition of spent bacterial medium to diatom cultures, suggesting that soluble substances from bacteria have an impact on diatom physiology. While searching for putative bacterial signal substances, we found that concentrations of various dissolved free amino acids (DFAA) within the diatom cultures changed drastically during co-cultivation with bacteria. Further, the secretion of extracellular carbohydrates and proteins can be influenced by bacteria or their extracellular substances. We have performed mass spectrometric peptide mapping to identify proteins which are secreted when co-cultivating the diatom Phaeodactylum tricornutum Bohlin and Escherichia coli. The identified proteins are possibly involved in signalling, extracellular carbohydrate modification and uptake, protein and amino acid modification, and cell/cell aggregation of diatom and bacteria strains. Our data indicate that diatom-bacteria biofilms might be regulated by a complex network of chemical factors involving EPS, amino acid monomers and other substances. Thus interactions with bacteria can be considered as one of the main factors driving biofilm formation by benthic diatoms.  相似文献   

19.
The excretion of glycolic acid by the marine diatom Chaetoceros socialis through time was studied. Excretion in axenic cultures was linear for the time intervals used, but for nonaxenic cultures an equilibrium was created, suggesting bacterial uptake of glycolic acid. In studies with an inhibitor of glycolate dehydrogenase, the level of glycolic acid in the medium jumped 15–fold. This shows the presence of this enzyme, and implies the presence of the entire set of enzymes which convert glycolic acid to serine and release carbon dioxide. In both axenic and nonaxenic cultures a steady state was reached. All of the data suggest that at high cell densities glycolic acid is liberated from the cell by a passive mechanism. The effect of such an excretion in natural waters is discussed.  相似文献   

20.
Crude extracts (aerial parts and roots, both dried), methylenedioxyflavonol, and a mixture of acyl steryl glycosides isolated from Blutaparon portulacoides, were assayed for their toxicity against Trypanosoma cruzi trypomastigotes and Leishmania amazonensis amastigotes from axenic cultures. The antimicrobial activity was also investigated, in a screening conducted using fifteen strains of Gram-positive and Gram-negative bacteria, along with the yeasts, Candida albicans and Candida tropicalis. To assess the antibacterial activity of the isolated compounds, the minimum inhibitory concentrations (MICs) were determined. There are no reports of acyl steryl glycosides in the genus Blutaparon and their biological activities are being evaluated for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号