首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel leads to liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar leads to hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel leads to liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the delta H values becomes 7.1 kcal X mol-1 as compared to 8.2 kcal X mol-1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (delta H = 3.1 kcal X mol-1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (-13.5 degrees C in the presence of 20,S-OH cholesterol). The delta H of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar leads to hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The delta H of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3 beta- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ratio, 1:1) monomolecular film exhibits a transition at approx. 103 A2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

3.
The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50 degrees C. At temperatures above 22 degrees C, the dispersions form an inverse (HII) phase at all water concentrations. Below 25 degrees C, an HII phase occurs at high water concentrations, an L alpha phase is formed at intermediate water concentrations, and finally the system switches back to an HII phase at low water concentrations. The enthalpy of the L alpha-HII-phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31P and 2H NMR and X-ray diffraction, we measured the trapped water volumes in HII and L alpha phases as a function of osmotic pressure. The change of the HII-phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The HII-L alpha-HII double-phase transition at temperatures below 22 degrees C can be shown to be a consequence of (i) the greater degree of hydration of the HII phase in excess water and (ii) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams.  相似文献   

4.
A Blume  J Tuchtenhagen 《Biochemistry》1992,31(19):4636-4642
The heat of dissociation of the second proton of 1,2-dimyristoylphosphatidic acid (DMPA) was studied as a function of temperature using titration calorimetry. The dissociation of the second proton of DMPA was induced by addition of NaOH. From the calorimetric titration experiment, the intrinsic pK0 for the dissociation reaction could be determined by applying the Gouy-Chapman theory. pK0 decreases with temperature from ca. 6.2 at 11 degrees C to 5.4 at 54 degrees C. From the total heat of reaction, the dissociation enthalpy, delta Hdiss, was determined by subtracting the heat of neutralization of water and the heat of dilution of NaOH. In the temperature range between 2 and 23 degrees C, delta Hdiss is endothermic with an average value of ca. 2.5 kcal.mol-1 and shows no clear-cut temperature dependence. In the temperature range between 23 and 52 degrees C, delta Hdiss calculated after subtraction of the heat of neutralization and dilution is not the true dissociation enthalpy but includes contributions from the phase transition enthalpy, delta Htrans, as the pH jump induces a transition from the gel to the liquid-crystalline phase. The delta Cp for the reaction enthalpy observed in this temperature range is positive. Above 53 degrees C, the pH jump induces again only the dissociation of the second proton, and the bilayers stay in the liquid-crystalline phase. In this temperature range, delta Hdiss seems to decrease with temperature. The thermodynamic data from titration calorimetry and differential scanning calorimetry as a function of pH can be combined to construct a complete enthalpy-temperature diagram of DMPA in its two ionization states.  相似文献   

5.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

6.
The synthesis and characterization of an artificial boundary lipid, 1,2-dimyristoylamido-1,2-deoxyphosphatidylcholine (DDPC), are described. DDPC has two amide bonds instead of ester bonds of regular lecithins such as 1,2-dimyristoylphosphatidylcholine (DMPC). In differential scanning calorimetry (DSC) measurements, DDPC gave two endothermic peaks: one was at 18.0 degrees C (delta H = 10.74 kJ.mol-1) and the other at 23.0 degrees C (delta H = 12.91 kJ.mol-1). The former peak was sharp and considered to be the phase transition of the hydrocarbon region, while the latter was assigned to the melt of the hydrogen-belt formed by the amide groups of DDPC. Addition of DDPC to DMPC made the DMPC membrane less fluid in the region close to the surface, and significantly increased the reconstitution efficiency of glycophorin into the membrane. This effect of DDPC was much larger than that of naturally occurring lipid, sphingomyelin.  相似文献   

7.
D P Siegel  J L Banschbach 《Biochemistry》1990,29(25):5975-5981
Inverted cubic (QII) phases form in hydrated N-methylated dioleoylphosphatidylethanolamine (DOPE-Me). Previous work indicated that QII phases in this and other systems might be metastable structures. Whether or not QII phases are stable has important implications for models of the factors determining the relative stability of bilayer and nonbilayer phases and of the mechanisms of transitions between those phases. Here, using X-ray diffraction and very slow scan rate differential scanning calorimetry (DSC), we show that thermodynamically stable QII phases form slowly during incubation of multilamellar samples of DOPE-Me at constant temperature. The equilibrium L alpha/QII phase transition temperature is 62.2 +/- 1 degree C. The transition enthalpy is 174 +/- 34 cal/mol, about two-thirds of the L alpha/HII transition enthalpy observed at faster scan rates. This implies that the curvature free energy of lipids in QII phases is substantially lower than in L alpha phases and that this reduction is substantial compared to the reduction achieved in the HII phase. The L alpha/QII transition is slow and is not reliably detected with DSC until the temperature scan rate is reduced to ca. 1 degrees C/h. At faster scan rates, the HII phase forms at a reproducible temperature of 66 degrees C. This HII phase is metastable until ca. 72-79 degrees C, where the equilibrium QII/HII transition seems to occur. These results, as well as the induction of QII phases in similar systems by temperature cycling (observed by others), are consistent with a theory of L alpha/QII/HII transition mechanisms proposed earlier (Siegel, 1986c).  相似文献   

8.
Glucocerebrosides (GlcCer) isolated from the leaves of winter rye (Secale cereale L. cv Puma) differ from the more commonly investigated natural and synthetic cerebrosides, in that greater than 95% of the fatty acids are saturated and monounsaturated hydroxy fatty acids. Isomers of the trihydroxy long chain base hydroxysphingenine (t1(8:18 cis or trans)) and isomers of sphingadienine (d18:2(4trans, 8 cis or trans)) comprise 77% and 17%, respectively, of the total long chain bases. The phase behavior of fully hydrated and dry rye leaf GlcCer was investigated using differential scanning calorimetry (DSC) and x-ray diffraction. On initial heating, aqueous dispersions of GlcCer exhibit a single endothermic transition at 56 degrees C and have an enthalpy (delta H) of 46 J/g. Cooling to 0 degrees C is accompanied by a small exothermic transition (delta H = -8 J/g) at 8 degrees C. On immediate reheating, a broad exothermic transition (delta H = -39 J/g) is observed between 10 and 20 degrees C in addition to a transition at 56 degrees C. These transitions are not reversible, and the exothermic transition rapidly diminishes when the sample is held at low temperature. Using x-ray diffraction, it was determined that the endotherm at 56 degrees C represents a transition from a highly ordered lamellar crystalline phase (Lc) with a d-spacing of 57 A and a series of wide-angle reflections in the 3-10 A range, to a lamellar liquid crystalline (L alpha) phase having a d-spacing of 55 A and a diffuse wide-angle scattering peak centered at 4.7 A. Cooling leads to the formation of a metastable gel phase (L beta) with a d-spacing of 64.0 A and a single broad reflection at 4.28 A. Subsequent warming to above 15 degrees C restores the original Lc phase. Thus, rye GlcCer in excess water exhibit a series of irreversible transitions and gel phase metastability. Dry GlcCer undergo an initial heating endothermic transition at 130 degrees C, which is ascribed to a transformation into the HII phase from a two phase state characterized by the coexistence of phases with disordered (alpha) and helical (delta) type chain conformations but of unknown lattice identity: An exotherm at 67.5 degrees C observed upon subsequent cooling is of unknown origin. Since an undercooled HII phase persists down to 19 degrees C, the exotherm may derive in part from an alpha-to-delta type chain packing conformational change especially under slow cooling conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
M Z Lai  W J Vail  F C Szoka 《Biochemistry》1985,24(7):1654-1661
The membrane stabilization effect of cholesteryl hemisuccinate (CHEMS) and the sensitivity of the CHEMS-phosphatidylethanolamine membranes to protons and calcium ions were studied by differential scanning calorimetry, freeze-fracture electron microscopy, and 31P NMR. (1) At neutral pH, the addition of 8 mol % CHEMS to transesterified egg phosphatidylethanolamine (TPE) raised the lamellar-hexagonal transition temperature of TPE by 11 degrees C. Stable bilayer vesicles were formed when the incorporated CHEMS exceeded 20 mol %. (2) At a pH below 5.5, the protonation of CHEMS enhanced the formation of the hexagonal phase (HII) of TPE. At 25 mol % CHEMS the bilayer-hexagonal transition temperature was lowered by 30 degrees C at pH 4.5. (3) The endothermic acid-induced hexagonal hexagonal transition of TPE-CHEMS was suppressed at 35 mol % CHEMS. However, 31P NMR and electron microscopy indicated that a lamellar-hexagonal transition still occurred at this composition. (4) The main transition of TPE was not affected by the protonation of the incorporated CHEMS, indicating that no macroscopic phase separation occurred in TPE-CHEMS mixtures at low pH. (5) In contrast to the HII-promoting effect of H+, the neutralization of the negative charge on TPE-CHEMS by Ca2+ resulted in aggregates that remained in the lamellar structure even at the hexagonal transition temperature of TPE. It is suggested that calcium might form a complex between CHEMS in apposed bilayers. These results are related to the possible biological function of acidic cholesterol esters in biomembranes.  相似文献   

10.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

11.
The thermotropic properties of triolein-rich, low-cholesterol dipalmitoyl phosphatidylcholine (DPPC) emulsion particles with well-defined chemical compositions (approximately 88% triolein, 1% cholesterol, 11% diacyl phosphatidylcholine) and particle size distributions (mean diameter, approximately 1000-1100 A) were studied in the absence and presence of apolipoprotein-A1 by a combination of differential scanning and titration calorimetry. The results are compared to egg yolk PC emulsions of similar composition and size. Isothermal titration calorimetry at 30 degrees C was used to saturate the emulsion surface with apo-A1 and rapidly quantitate the binding constants (affinity Ka = 11.1 +/- 3.5 x 10(6) M-1 and capacity N = 1.0 +/- 0.09 apo-A1 per 1000 DPPC) and heats of binding (enthalpy H = -940 +/- 35 kcal mol-1 apo-A1 or -0.92 +/- 0.12 kcal mol-1 DPPC). The entropy of association is -3070 cal deg-1 mol-1 protein or -3 cal deg-1 mol-1 DPPC. Without protein on the surface, the differential scanning calorimetry heating curve of the emulsion showed three endothermic transitions at 24.3 degrees C, 33.0 degrees C, and 40.0 degrees C with a combined enthalpy of 1.53 +/- 0.2 kcal mol-1 DPPC. With apo-A1 on the surface, the heating curve showed the three transitions more clearly, in particular, the second transition became more prominent by significant increases in both the calorimetric and Van't Hoff enthalpies. The combined enthalpy was 2.70 +/- 0.12 kcal mol-1 DPPC and remained constant upon repeated heating and cooling. Indicating that the newly formed DPPC emulsion-Apo-A1 complex is thermally reversible during calorimetry. Thus there is an increase in delta H of 1.17 kcal mol-1 DPPC after apo-A1 is bound, which is roughly balanced by the heat released during binding (-0.92 kcal) of apo-A1. The melting entropy increase, +3.8 cal deg-1 mol-1 DPPC of the three transitions after apo-A1 binds, also roughly balances the entropy (-3 cal deg-1 mol-1 DPPC) of association of apo-A1. These changes indicate that apo-A1 increases the amount of ordered gel-like phase on the surface of DPPC emulsions when added at 30 degrees C. From the stoichiometry of the emulsions we calculate that the mean area of DPPC at the triolein/DPPC interface is 54.5 A2 at 41 degrees C and 54.2 A2 at 30 degrees C. The binding of apo-A1 at 30 degrees C to the emulsion reduces the surface area per DPPC molecule from 54.2 A2 to 50.8 A2. At 30 degrees apo-A1 binds with high affinity and low capacity to the surface of DPPC emulsions and increases the packing density of the lipid domain to which it binds. Apo-A1 was also titrated onto DPPC emulsions at 45 degrees C. This temperature is above the gel liquid crystal transition. No heat was released or adsorbed. Furthermore, egg yolk phosphatidylcholine emulsions of nearly identical composition were also titrated at 30 degrees C with apo-A1 and were euthermic. Association constants were previously measured using a classical centrifugation assay and were used to calculate the entropy of apo-A1 binding (+28 cal deg-1 mol-1 apo-A1). This value indicates that apo-A1 binding to a fluid surface like egg yolk phosphatidylcholine or probably DPPC at 45 degrees C is hydrophobic and is consistent with hydrocarbon lipid or protein moities coming together and excluding water. Thus the binding of apo-A1 to partly crystalline surfaces is entropically negative and increases the order of the already partly ordered phases, whereas binding to liquid surfaces is mainly an entropically driven hydrophobic process.  相似文献   

12.
Tris buffer causes acyl chain interdigitation in phosphatidylglycerol   总被引:2,自引:0,他引:2  
The structure of the gel phase and the properties of the acyl chain disordering transition of dipalmitoyl phosphatidylglycerol (DPPG) have been studied using differential scanning calorimetry, differential scanning dilatometry, and X-ray diffraction. In the presence of small, monovalent cations, DPPG at 22 degrees C exists in a lamellar phase in which the hydrocarbon chains are tilted from the perpendicular to the bilayer surface. Around 34 degrees C, there is a small pretransition (delta H less than 1 kcal/mol) followed by the main transition at 40.4 degrees C (delta H = 8.3 kcal/mol; delta V = 0.0381 ml/g). If DPPG is suspended in Tris-HCl buffer in the absence of other monovalent cations, X-ray diffraction data show that at 22 degrees C, the gel phase consists of interdigitated acyl chains perpendicular to the plane of the bilayer. No pretransition is observed and the main transition occurs at 41.3 degrees C with delta H = 9.1 kcal/mol and delta V = 0.0514 ml/g. If sufficient Na+ or K+ ions are added to the Tris-buffered DPPG, the phase behavior reverts to what is observed in the absence of Tris. Analysis of the energetics of the main transition shows that the increase in van der Waals interaction energy resulting from the larger delta V in Tris can be compensated by the favorable energetics of removing terminal methyl groups from the bilayer surface. The amount of disordering, i.e. formation of gauche rotamers, is likely to be the same in Tris as it is in buffers without amphiphilic cations.  相似文献   

13.
The relationship between lipid composition and phase transition was investigated by differential scanning calorimetry for intact and membrane phospholipid extracts of wild-type (w/t) and the cel-(Tw 40) mutant of Neurospora crassa. The cel-(Tw 40) mutant (grown on minimal, sucrose medium supplemented with Tween 40 at approximately 34 degrees C) had approximately twice the saturated fatty acid content of w/t organisms grown at approximately 22 degrees C. The gel-liquid crystal phase transitions of ergosterol-free extracts derived from w/t and cel-(Tw 40) occur at -31 and -11 degrees C, respectively. The heats of transition (delta H) of these extracts were 1 and 13 cal/g, respectively. The addition of ergosterol (the predominant sterol in Neurospora) to the phospholipid extracts decreased the observed heats of transition, but did not alter the transition temperature. Intact Neurospora, whether w/t or cal-(Tw 40) did not manifest similar gel-liquid crystal phase transitions in the differential scanning calorimeter. However, an endothermic peak at approximately 30 degrees C was observed in intact cells and extracted phospholipids of both w/t and cel-(Tw 40) organisms. This peak was insensitive to the addition of ergosterol, had a low heat content (delta H congruent to 1 cal/g), and was reversible.  相似文献   

14.
Influence of vitamin E on phosphatidylethanolamine lipid polymorphism   总被引:1,自引:0,他引:1  
The effect of vitamin E, in its major form alpha-tocopherol and its synthetic analog alpha-tocopheryl acetate, on phosphatidylethanolamine lipid polymorphism has been studied by mean of differential scanning calorimetry and 31P-nuclear magnetic resonance techniques. From the interaction of these tocopherols with dielaidoylphosphatidylethanolamine it is concluded that both molecules promote the formation of the hexagonal HII phase at temperatures lower than those of the pure phospholipid. When the tocopherols were incorporated in the saturated dimiristoylphosphatidylethanolamine, which has been shown not to undergo bilayer to hexagonal HII phase transition, up to 90 degrees C, they induce the phospholipid to partially organize in hexagonal HII phase. From our experiments it is shown that alpha-tocopherol is more effective than its analog in promoting HII phase in these systems. It is also shown that, while alpha-tocopheryl acetate does not significantly perturb the gel to liquid-crystalline phase transition of dimirystoylphosphatidylethanolamine, alpha-tocopherol does so and more than one peak appears in the calorimetric profile, indicating that lateral phase separations are taking place.  相似文献   

15.
Structural alterations, as manifested by thermal transitions, caused by removal or binding of metal ions to human and bovine CuZn superoxide dismutases (SODs) were investigated by differential scanning calorimetry. Although holo forms of the two mammalian enzymes exhibited irreversible thermal transitions (delta Hcal. = 27.7 J/g and Td = 104 degrees C for bovine SOD; delta Hcal. = 23.6 J/g and Td = 101 degrees C for human SOD), only the bovine apoenzyme showed the presence of a less thermostable form (delta Hcal. = 10.7 J/g and Td = 63 degrees C). These observations suggested that human apo-SOD had considerably less conformational order than bovine apo-SOD. Reconstitution of human and bovine apoenzymes with Cu2+ and Zn2+ resulted in recovery of thermodynamic parameters and specific activity. Binding of Zn2+ alone to human apo-SOD resulted in the formation of two distinct structural units, detectable by differential scanning calorimetry, which underwent conformational disorder at 82 and 101 degrees C respectively. Saturation of binding sites with both Zn2+ and Cu2+ appeared to stabilize the enzyme structure further as shown by elimination of the low-temperature transition and the appearance of another thermal transition at a higher temperature.  相似文献   

16.
Thermodynamic study of yeast phosphoglycerate kinase   总被引:2,自引:0,他引:2  
Enthalpies of binding of MgADP, MgATP, and 3-phosphoglycerate to yeast phosphoglycerate kinase have been determined by flow calorimetry at 9.95-32.00 degrees C. Combination of these data with published dissociation constants [Scopes, R.K. (1978) Eur. J. Biochem. 91, 119-129] yielded the following thermodynamic parameters for the binding of 3-phosphoglycerate at 25 degrees C: delta Go = -6.76 +/- 0.11 kcal mol-1, delta H = 3.74 +/- 0.08 kcal mol-1, delta So = 35.2 +/- 0.6 cal K-1 mol-1, and delta Cp = 0.12 +/- 0.32 kcal K-1 mol-1. The thermal unfolding of phosphoglycerate kinase in the absence and presence of the ligands listed above was studied by differential scanning calorimetry. The temperature of half-completion, t 1/2, of the denaturation and the denaturational enthalpy are increased by the binding of the ligands, the increase in t 1/2 being a manifestation of Le Chatelier's principle and that in enthalpy reflecting the enthalpy of dissociation of the ligand. Only one denaturational peak was observed under all conditions, and in contrast with the case of yeast hexokinase [Takahashi, K., Casey, J.L., & Sturtevant, J.M. (1981) Biochemistry 20, 4693-4697], no definitive evidence for the unfolding of more than one domain was obtained.  相似文献   

17.
The temperature induced unfolding of barstar wild-type of bacillus amyloliquefaciens (90 residues) has been characterized by differential scanning microcalorimetry. The process has been found to be reversible in the pH range from 6.4 to 8.3 in the absence of oxygen. It has been clearly shown by a ratio of delta HvH/delta Hcal near 1 that denaturation follows a two-state mechanism. For comparison, the C82A mutant was also studied. This mutant exhibits similar reversibility, but has a slightly lower transition temperature. The transition enthalpy of barstar wt (303 kJ mol-1) exceeds that of the C82A mutant (276 kJ mol-1) by approximately 10%. The heat capacity changes show a similar difference, delta Cp being 5.3 +/- 1 kJ mol-1 K-1 for the wild-type and 3.6 +/- 1 kJ mol-1 K-1 for the C82A mutant. The extrapolated stability parameters at 25 degrees C are delta G0 = 23.5 +/- 2 kJ mol-1 for barstar wt and delta G0 = 25.5 +/- 2 kJ mol-1 for the C82A mutant.  相似文献   

18.
J A Killian  B de Kruijff 《Biochemistry》1985,24(27):7881-7890
The effect of gramicidin incorporation on the thermodynamic properties of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) dispersions was investigated by differential scanning calorimetry. The results show that incorporation of gramicidin in PC systems results in a decrease of the energy content of the gel to liquid-crystalline phase transition. When incorporated in PE systems, however, the peptide does not affect the properties of the gel to liquid-crystalline phase transition with the exception that at high gramicidin concentrations the onset of the melting process is shifted to a slightly lower temperature. We therefore assume that in the lamellar gel state of PE aggregation of the peptide occurs. To get more insight into the nature of the gramicidin-PE interaction, we studied the motional and structural details of HII phase formation in gramicidin/PE systems with the use of 31P and 13C nuclear magnetic resonance (NMR) and small-angle X-ray diffraction. In agreement with earlier results [Van Echteld, C. J. A., Van Stigt, R., de Kruijff, B., Leunissen-Bijvelt, J., Verkleij, A. J., & De Gier, J. (1981) Biochim. Biophys. Acta 648, 287-291] it was shown that gramicidin incorporation lowers and broadens the bilayer to hexagonal HII phase transition in PE systems. 31P NMR chemical shift anisotropy (CSA) measurements indicated that a phase separation occurs between a gramicidin-poor lamellar phase and a gramicidin-rich HII phase. From combined CSA and spin-lattice relaxation time (T1) measurements it was suggested that in the HII phase gramicidin decreases the molecular order and increases the rate of motion of the phosphate moiety of PE. In addition, 13C NMR line width measurements indicated that the acyl chains are more disordered in the HII phase than in the lamellar phase and that a similar disorder occurs in the HII phase of the pure PE as in the gramicidin-rich HII phase. This interpretation was supported by the X-ray diffraction data, which show similar first-order repeat distances in both types of HII phase. From saturation-transfer NMR experiments in PE and gramicidin-PE mixtures it was shown that no exchange occurs between the lamellar and the HII phases in the time scale of 1-2 s, suggesting a macroscopic phase separation. Finally, we discussed the gramicidin-lipid interaction and in particular the HII phase formation by gramicidin in PE and in PC systems. It is proposed that aggregation of the peptide plays a crucial role in HII phase formation.  相似文献   

19.
K Takahashi  H Fukada 《Biochemistry》1985,24(2):297-300
The binding of Streptomyces subtilisin inhibitor (SSI) to subtilisin of Bacillus subtilis strain N' (subtilisin BPN', EC 3.4.21.14) was studied by isothermal calorimetry at pH 7.0 and at various temperatures ranging from 5 to 30 degrees C. Thermodynamic quantities for the binding reaction were derived as a function of temperature by combining the data reported for the dissociation constant with the present calorimetric results. At 25 degrees C, the values are delta G degrees = -57.9 kJ mol-1, delta H = -19.8 kJ mol-1, delta S degree = 0.13 kJ K-1 mol-1, and delta Cp = -1.02 kJ K-1 mol-1. The entropy and the heat capacity changes are discussed in terms of the contributions from the changes in vibrational modes and in hydrophobic interactions.  相似文献   

20.
The effect of mono-, di- and triacylglycerols on the bilayer to hexagonal phase (HII) transition was studied by differential scanning calorimetry and 31P-NMR spectroscopy. The acylglycerols were mixed with either dielaidoylphosphatidylethanoline or with 1-palmitoyl-2-oleoylphosphatidylethanolamine. Acylglycerols of lauric, oleic and stearic acids were utilized. All of the acylglycerols lowered the bilayer to HII phase transition temperature. Diacylglycerols were much better HII phase promoters than monoacylglycerols while triacylglycerols were the most potent bilayer phase destabilizers. Fatty acid composition generally had less of an effect except for the monoacylglycerols where bilayer destabilization increased from monolaurin to monostearin to monoolein. The most marked difference in behaviour resulting from changes in the fatty acid composition of the acylglycerol occurred with tristearin. This was the only acylglycerol which decreased the bilayer to HII phase transition temperature only below a mol fraction of 0.005. Above this mol fraction, further addition of tristearin had no effect on the bilayer to HII phase transition. These results suggest that the tristearin has limited solubility in phosphatidylethanolamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号