首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly specific insulin receptors have been identified on human promyelocytic leukemia cells HL60. Insulin binding increased progressively with time to reach a maximum at 2 h at 22° and was proportional to the number of cells in the incubation mixture. Insulin degradation as assessed by TCA precipitation and reincubation studies was negligible. Scatchard analysis of the binding data was curvilinear and the total number of insulin receptor sites per cell was around 45,000. The average affinity profile gave an “unoccupied site” affinity constant of 3.5 × 108 M?1. The promyelocytic cells HL60, thus, have specific binding sites and binding characteristics similar to more mature human myeloid cells.  相似文献   

2.
Binding of 125I-bovine and chicken insulin to cultured embryonic chick skeletal muscle cells was studied. Bovine and chicken insulin bound cultured cells with high affinities of 2.4 X 10(9)M-1 and 4.8 X 10(9)M-1 and low affinities of 2.4 X 10(7)M-1 and 3.7 X 10(7)M-1, respectively. Maximum insulin binding was achieved after 90 min of incubation at 20 degrees C and the maximum value was maintained for an additional 3 hr. Insulin binding increased in a linear manner with increasing nuclei number over a 5-fold range. Maximum insulin binding per nuclei decreased as cell fusion increased between 24 and 72 hr in culture, primarily due to a decrease in the number of low affinity insulin receptors.  相似文献   

3.
The Daudi line of human lymphoblastoid cells requires insulin and transferrin for growth in serum-free medium and is highly sensitive to the inhibitory effect of human leukocyte interferon (IFN-alpha) on cell proliferation. A variant subline of Daudi cells, which is resistant to the antiproliferative action of IFN-alpha, also has been grown in serum-free medium containing insulin and transferrin. The proliferation of IFN-sensitive and -resistant Daudi cells is dependent on the occupancy of insulin receptors, with optimal cell proliferation observed at high receptor occupancy (nearly 100%). No evidence was found for receptors for insulin-like growth factor I on Daudi cells. IFN treatment of IFN-sensitive cells decreased the capacity of the cells to bind 125I-insulin. The altered binding capacity was due to diminished specific, lower affinity insulin binding, as detected at high 125I-insulin concentrations. Higher affinity insulin binding was not altered by IFN. Insulin binding was also reduced in detergent-solubilized extracts from IFN-treated sensitive Daudi cells and the magnitude of the effect was comparable to that observed in intact cells. This indicates that the total number of insulin binding sites (surface + internal) is decreased in IFN-treated sensitive cells. Insulin binding to IFN-sensitive cells decreased linearly with time between 6 and 48 h from the addition of IFN. The effect on lower affinity insulin binding developed more rapidly than the inhibitory effect of IFN on cell proliferation. The insulin-binding capacity of Daudi cells resistant to the antiproliferative effect of IFN was unaffected by IFN, despite the fact that these cells contain as many cell surface IFN receptors as sensitive cells. These observations raise the possibility that lower affinity insulin binding is important in the growth-promoting actions of insulin.  相似文献   

4.
Insulin receptors have been characterized in rat prostatic epithelial cells by using [125I]insulin and a variety of physicochemical conditions. The binding data at equilibrium (2 h at 15 degrees C) could be interpreted in terms of two populations of insulin receptors: a class of receptors with high affinity (Kd = 2.16 nM) and low binding capacity (28.0 fmol mg-1 protein), and another class of receptors with low affinity (Kd = 0.29 microM) and high binding capacity (1.43 pmol mg-1 protein). Proinsulin exhibited a 63-fold lower affinity than insulin for binding sites whereas unrelated peptides were ineffective. The specific binding of insulin increased by about 50 per cent after 96 h of fasting; this increase could be explained by an increase of both the number of the high affinity-low capacity sites and the affinity of the low affinity-high capacity sites. These results together with previous studies on insulin action at the prostatic level strongly suggest that insulin may exert a physiological role on the prostatic epithelium.  相似文献   

5.
Specific insulin receptors were measured in isolated mouse pancreatic acini. Scatchard analyses revealed a high affinity binding site with a Kd of 1.67 nM and a lower affinity site with a Kd of 83 nM. Binding of insulin to these receptors was rapid, one-half maximal binding occurring at 2 min and maximal binding at 30 min. Insulin stimulated the uptake of the glucose analogue 2-deoxy-D-glucose; maximum effects were detected at 1.67 μM. Insulin, in contrast, had no direct effects on alpha-aminoisobutyric acid uptake. The finding of high affinity insulin receptors in pancreatic acinar cells supports the hypothesis that insulin may directly regulate specific functions in the exocrine pancreas.  相似文献   

6.
Insulin receptors and insulin effects on type II alveolar epithelial cells   总被引:1,自引:0,他引:1  
Type II alveolar epithelial cells (pneumocytes) were isolated to purity from adult rabbits and analyzed for the presence of cell surface insulin receptors and for effects of insulin on cells. Assays were performed on cells cultured for 24 h in Eagle's minimum essential medium. Insulin binding to cells in culture approached a steady-state level by 180 min at 15 degrees C and remained constant for at least 1 h. Competition experiments using native insulin, proinsulin and desoctapeptide supported specificity of binding. Scatchard analysis of binding revealed a class of high-affinity receptors with Kd = 1.5 X 10(-10) M and a low-affinity component with Kd = 4 X 10(-9) M. The number of receptors was estimated at 2000-4000/cell. Insulin added to cell cultures of type II pneumocytes in concentrations from 5 X 10(-11) to 5 X 10(-8) M resulted in a dose-related increase in uptake of 2-deoxyglucose by cells. Insulin also stimulated the incorporation of choline and glucose into phosphatidylcholine and disaturated phosphatidylcholine.  相似文献   

7.
Erythrocyte insulin-like growth factor I (IGF-I) and insulin receptors were characterized in 10 normal prepubertal children (5 girls and 5 boys) aged 4-11 yrs and 10 normal adults (4 women and 6 men) aged 32-47 yrs. erythrocytes were purified from 5 ml of blood by Ficoll-Paque gradient centrifugation. Reticulocytes count in the erythrocyte suspensions were lower than 1%. Insulin and IGF-I binding assays were performed simultaneously. Maximal percent binding of [125I] labelled IGF-I was significantly higher in prepubertal children than in adults (8.7 +/- 0.7% versus 6.2 +/- 0.5% at a concentration of 5 x 10(9) erythrocytes/ml). Scatchard analysis revealed the high affinity constant was better in prepubertal children (Ka = 4.6 +/- 1.3 nM-1 versus 1.8 +/- 0.2 nM-1), whereas the binding capacity was similar (5.8 +/- 1.1 versus 7.7 +/- 0.8 high affinity binding sites/cell). In both groups, unlabelled IGF-I inhibited tracer-binding half maximally at about 1 nM. Insulin was 100-fold less potent. In adults, specific binding of [125I] labelled IGF-I was higher in women (7.6 +/- 0.7%) than in men (5.3 +/- 0.4%). No significant difference was observed in maximal specific binding of [125I] labelled insulin between prepubertal children (8.2 +/- 0.5%) and adults (7.2 +/- 0.7%). In both groups, competition by unlabelled insulin for [125I] labelled insulin binding gave 50% displacement for approximately 0.25 nM and IGF-I was about 80-fold less potent. Both IGF-I and insulin binding parameters were not significantly correlated with plasma hormone levels. In prepubertal children, the high-affinity IGF-I receptors number decreased with increasing high-affinity insulin receptors number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of high-glucose condition on insulin binding to IM-9 lymphocytes   总被引:1,自引:0,他引:1  
The long-term effect of high-glucose condition on insulin binding to IM-9 cells was studied by incubating the cells in RPMI-1640 medium containing 450 mg/dl of glucose. Insulin binding began to decrease after incubation for 6 days in high-glucose-treated cells, and significantly decreased after 14 days due to the reduction of receptor affinity. The number of binding sites for insulin did not change by the treatment. Thus, high-glucose condition per se does not appear to induce the decrease of the number of insulin receptors on target cells, as observed in diabetic patients.  相似文献   

9.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

10.
The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insulin in inhibiting 125I-insulin binding to brain-cortical cells, which corresponds to their relative biological potencies in classical insulin-target cells; no competition was observed with glucagon and nerve growth factor, even at high concentrations. Scatchard analysis of competitive-binding data resulted in curvilinear plots with a high-affinity binding of Ka = 3.6 X 10(8) M-1. Insulin binding to foetal brain-cortical cells differed, however, in two distinct aspects from that to classical insulin-binding cell types. Firstly, dilution of 125I-insulin-bound cells in the presence of unlabelled insulin did not accelerate dissociation of the labelled hormone. Secondly, exposure of brain-cortical cells to insulin before the binding assay enhanced insulin binding, suggesting up-regulation of insulin receptors in response to insulin. In conclusion, foetal-mouse brain-cortical cells bear specific binding sites for insulin. Their insulin receptor shows a marked specificity and affinity for insulin, but differs in at least two properties from most classical insulin receptors. These differences in hormone-receptor interaction could reflect structural differences between insulin receptors on embryonic and differentiated cells.  相似文献   

11.
Characteristics of insulin binding to H35 hepatoma cells   总被引:1,自引:0,他引:1  
C P de Vries  E A Van der Veen 《Biochimie》1985,67(10-11):1191-1194
Well differentiated hepatoma cells in culture exhibit insulin binding and insulin effects. We have studied insulin binding in control and in H35 hepatoma cells down-regulated with insulin. H35 cells were grown in monolayers in alpha MEM. Insulin binding was measured with A14 mono 125I labelled insulin 72 h after seeding. Binding was time, temperature and pH-dependent. Receptor down-regulation was studied by exposing cells to increasing concentrations of unlabelled insulin. Monolayers preincubated with 10 micrograms/ml unlabelled insulin for 24 h showed a decrease of 65% in the number of insulin binding sites. There was no change in affinity.  相似文献   

12.
Insulin receptors on hepatocytes were studied in spontaneously diabetic Chinese hamsters, which are the animal models for insulin deficient diabetes. Insulin binding in diabetic animals increased mainly due to an increase in the number of receptors. Although binding affinity of diabetic animals was similar to that of control animals, a kinetic study revealed that both the association rate constant and the dissociation rate constant decreased in diabetic animals. Negatively cooperative interactions between receptors were demonstrated in control and diabetic animals, and both the magnitude and sensitivity of this effect was the same in both types of animals. A significant inverse correlation between insulin binding and the plasma insulin concentration was found in these animals. These results therefore suggest that there is an increase in the insulin binding in the insulin deficient diabetic state mainly due to an increase in the number of receptors with a decrease in both the association and dissociation rate constants, and these changes may be important in the altered metabolic state.  相似文献   

13.
The very low expression of insulin receptors in the Burkitt lymphoma cell Raji was increased 2-fold, 6-fold and 10-fold after 1, 2 and 3 days, respectively, by incubation with the differentiation inducer sodium butyrate. Insulin receptor number was increased without a change in receptor affinity, in association with an increase in the receptor alpha and beta subunits detected after cell-surface labelling and immunoprecipitation. Expression of cell-surface class I and II human leukocyte antigens, the intercellular adhesion molecule-1 and the CD38 leukocyte antigen was also increased, consistent with B cell differentiation. Butyrate effects were not unspecific, as the binding of tumour necrosis factor and growth hormone and the expression of the B cell markers CD20, B5 and CD21 was not increased. The low expression of insulin receptors on Raji cells is therefore a reflection of the less differentiated state of these cells compared to lymphoblastoid cells.  相似文献   

14.
Abstract

Insulin and IGF-I receptors in G26–20 cells, derived from a mouse oligodendroglioma, and in RN-2 cells, derived from a rat Schwannoma, were characterized by specific binding to [125I]insulin and [125I]IGF-I respectively. In both cell lines, the Kd for insulin was 1.5 nM. Insulin receptor number was 33,000/cell for RN-2 cells and 17,000 receptors/ cell for G26–20 cells. RN-2 cells have 700,000 IGF-I receptors/cell with a Kd of 2 nM while G26–20 cells have 60,000 receptors/cell with an affinity of 4.9 nM. However, the independence of these two receptor populations in each cell type was equivocal since the subunit structure of these receptors appears identical by electrophoresis. In both cell lines, competition with insulin analogs for [125I]insulin binding demonstrated chicken insulin>insulin>IGF-I. Competition for [125I]IGF-I binding showed that IGF-I was approximately 85-fold more potent than insulin. Chicken insulin was ineffective at all concentrations. Thus, chicken insulin can be used as a specific ligand to unequivocally discriminate between IGF-I and insulin receptors and effects.  相似文献   

15.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

16.
Insulin receptors on hepatocytes and erythrocytes were studied in rats two and eight weeks after the injection of streptozotocin (50 mg/kg) to see if erythrocyte insulin receptors change parallel with hepatocyte insulin receptors in response to hypoinsulinemia. Insulin binding to hepatocytes increased two (14.0 +/- 2.5% v.s. 7.7 +/- 0.7%; P less than 0.025) and eight weeks (15.9 +/- 1.9% v.s. 6.6 +/- 1.1%; P less than 0.005) after the streptozotocin injection. Scatchard analysis revealed that this increase was due to a rise in both the receptor concentration and affinity. The number of receptors was comparable in the two- and eight-week-streptozotocin rats while the increase in the affinity was more pronounced in the latter group. Insulin binding to the erythrocytes was also increased in both two- (5.0 +/- 0.7% v.s. 4.2 +/- 0.6%) and eight-week- (4.3 +/- 0.6% v.s. 2.7 +/- 1.2%) streptozotocin rats. This increase was due to a rise in the receptor concentration rather than the affinity. However, compared to hepatocytes, these changes were inconsistent and statistically not significant. Furthermore, no correlation was obtained between the binding and plasma insulin concentration. These results indicate that insulin receptors on rat erythrocytes are less sensitive to a change in the plasma insulin concentration and do not always reflect accurately the receptor state on hepatocytes.  相似文献   

17.
Alterations in the high and low affinity insulin receptor concentrations in developing rat liver were investigated. The number of high affinity receptors in partially purified plasma membranes from fetal rats increased from Days 19 through 22 of gestation, with no further increase in binding during the postnatal period. Fetuses of diabetic rats had approximately three times as many high affinity insulin receptors as age-matched fetuses of normal rats; however, by 1 day after birth the receptor number decreased to the normal level. Neither the number of low affinity receptors nor the affinity of insulin binding to high or low affinity receptors changed during development or between offspring of normal and diabetic rats. These changes in the number of high affinity hepatic insulin receptors from prenatal animals did not correlate with the concentration of plasma insulin. When suckling pups were rendered diabetic the changes in the number of high affinity insulin receptors correlated with alterations in plasma insulin concentrations. The number of high affinity sites/microgram DNA in hepatocytes from Day 18 fetal rats was not altered when cells were cultured for 48 h in medium containing 0, 250, or 5000 μU/ml of added insulin. When cultured hepatocytes derived from 1-day-old and adult rats were maintained in medium with added insulin concentrations of 250 or 5000 μU/ml the number of high affinity receptors/microgram DNA decreased as compared to the number of high affinity receptors in hepatocytes cultured in medium with no added insulin. This decrease in receptor number was accompanied by an increase in the affinity of insulin binding to its high affinity receptors. The data show that (i) only the high affinity insulin receptor number increases in rat liver during the prenatal period, (ii) fetuses of diabetic rats show a greater increase in high affinity receptors than do fetuses of normal animals, and (iii) the phenomenon of down regulation for high affinity insulin receptors is not observed in fetal rat liver, but is acquired in the immediate postnatal period.  相似文献   

18.
We have altered the phospholipid composition of the plasma membranes of Ehrlich ascites cells grown in mice and studied the effects on the properties of the insulin receptor of this cell. The insulin receptor of the Ehrlich cell demonstrated all of the binding characteristics of mammalian insulin receptors: specificity for insulin and insulin analogs, saturability, inverse relationship of steady-state binding levels to temperature, and negative cooperativity. Cellular phospholipids enriched in monounsaturated fatty acyl groups were produced by growth in animals that were maintained on a diet rich in coconut oil; cellular phospholipids enriched in polyunsaturated fatty acyl groups were produced in animals fed sunflower oil. Insulin receptors were present in the normal cells at 180 000 sites/cell but this fell to 125 000 (p <0.001) in cells enriched in monounsaturated fatty acids and rose to 386 000 (p <0.001) in cells enriched in polyunsaturated fatty acids. The normal cells had affinity constants ( and ) of 0.03 and 0.01 nM−1. The cells enriched in monounsaturated fatty acids had an increase in these affinity constants to 0.06 and 0.03 nM−1 whereas values of 0.01 and 0.005 nM−1 were obtained in the cells enriched in polyunsaturated fatty acids (all comparison p <0.001). Thus, increased unsaturation of plasma membrane phospholipids, produced by dietary manipulations, was associated with an increase in insulin receptor number but a decrease in binding affinity. In contrast, increased saturation of the phospholipids of the plasma membrane was associated with a decrease in receptor number and an increase in affinity. The results can be explained by a model in which the insulin receptor is assumed to be multimeric.  相似文献   

19.
Insulin and insulinlike growth factors I and II (IGF-I and IGF-II) influence mesodermal cell proliferation and differentiation. As multiple growth factors are involved in hemopoietic cell proliferation and differentiation, we assessed the receptor binding and mitogenic effects of these peptides on a panel of mesodermally derived human myeloid leukemic cell lines. The promyelocytic cell line HL60 had the highest level of specific binding for these 125I-labeled ligands, with lower binding to the less differentiated myeloblast cell line KG1 and undifferentiated blast variants of these cell lines (HL60blast, KG1a). Insulin binding affinity and receptor numbers were reduced significantly by chemically induced granulocytic differentiation of HL60 cells and was unchanged following induced monocytic differentiation. No substantial alteration in IGF-I or -II binding occurred with induced HL60 cell differentiation. Insulin and IGF-I demonstrated cross competition for receptor binding and down-regulated their homologous receptors without detectable cross modulation of the heterologous receptors on HL60 cells. IGF-I and insulin increased HL60 cell proliferation, as assessed by 3H-thymidine uptake, IGF-I greater than insulin. IGF-I binding and mitogenic effects were blocked by the monoclonal anti-IGF-I receptor antibody IR3, indicating that IGF-I-induced proliferative effects were mediated via its homologous receptor. In contrast, insulin binding and mitogenesis displayed blocking by both anti-IGI-I and anti-insulin receptor antibodies, indicating mediation of its activity through both receptors. These data demonstrate specific binding and mitogenic interactions between insulin, IGFs, and hemopoietic cells which are associated with their state of differentiation.  相似文献   

20.
Insulin and IGF-I receptors were solubilized from fused L-6 myocytes, a rat skeletal muscle derived cell line, and compared to rat skeletal muscle receptors. In skeletal muscle, 125I-insulin binding was competed by insulin greater than IGF-I greater than MSA, whereas in L-6 cells IGF-I greater than insulin greater than MSA. 125I-IGF-I binding was competed by IGF-I greater than insulin = MSA in both tissues. On electrophoresis, differences in Mr were observed between skeletal muscle and L-6 derived receptors both in the alpha- and beta-subunits. Six antibodies directed against the human insulin receptor beta-subunit recognized the rat skeletal muscle insulin receptor, while only two reacted strongly with L-6 derived receptors. Skeletal muscle has receptors with relative specificity for insulin and IGF-I respectively; L-6 cells also have two classes of receptors, one is kinetically similar to the IGF-I receptor from skeletal muscle; the other, which binds insulin with relatively high affinity has even greater affinity for IGF-I. This unusual receptor may represent a developmental stage in muscle or the transformed nature of L-6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号