首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wilms' tumor protein Wt1 plays an essential role in mammalian urogenital development. WT1 mutations in humans lead to a variety of disorders, including Wilms' tumor, a pediatric kidney cancer, as well as Frasier and Denys-Drash syndromes. Phenotypic anomalies in Denys-Drash syndrome include pseudohermaphroditism and sex reversal in extreme cases. We have used cDNA microarray analyses on Wt1 knockout mice to identify Wt1-dependent genes involved in sexual development. The gene most dramatically affected by Wt1 inactivation was Amhr2, encoding the anti-Müllerian hormone (Amh) receptor 2. Amhr2 is an essential factor for the regression of the Müllerian duct in males, and mutations in AMHR2 lead to the persistent Müllerian duct syndrome, a rare form of male pseudohermaphroditism. Here we show that Wt1 and Amhr2 are coexpressed during urogenital development and that the Wt1 protein binds to the promoter region of the Amhr2 gene. Inactivation and overexpression of Wt1 in cell lines was followed by immediate changes of Amhr2 expression. The identification of Amhr2 as a Wt1 target provides new insights into the role of Wt1 in sexual differentiation and indicates, in addition to its function in early gonad development and sex determination, a novel function for Wt1, namely, in Müllerian duct regression.  相似文献   

2.
3.
We have demonstrated recently that Wilms' tumor suppressor 1 (Wt1),in addition to its role in genitourinary formation,is required for the differentiation of ganglion cells in the developing retina. Here we provide further evidence that Wt1 is associated with neuronal differentiation. Thus, the retinoblastoma-derived human cell line, Y-79, contained robust amounts of Wt1 mRNA and protein. Wt1 expression was down-regulated upon laminin-induced differentiation of Y-79 into neuron-like cells. Inhibition of Wt1 with antisense oligonucleotides dramatically reduced the capacity of undifferentiated Y-79 cells to undergo neuronal differentiation, whereas sense and missense oligonucleotides had no effect. Wt1 immunoreactivity was also detected in solid retinoblastomas, in which it resided mainly in areas with moderate proliferative activity. These findings suggest a role for Wt1 in the differentiation of retinoblastoma cells. Furthermore, Wt1 expression in retinoblastoma may reflect the potential of these tumors to initiate the early steps of neuronal differentiation.  相似文献   

4.
Wagner KD  Wagner N  Schley G  Theres H  Scholz H 《Gene》2003,305(2):217-223
The Wilms' tumor gene Wt1 encodes a zinc finger protein, which is required for normal formation of the genitourinary system and mesothelial tissues. Our recent findings indicate that Wt1 also plays a critical role in the development of ganglion cells in the vertebrate retina. Here we show that the POU-domain factor Pou4f2 (formerly Brn-3b), which is necessary for retinal ganglion cell survival, is up-regulated in human embryonic kidney (HEK)293 cells with stable Wt1 expression. Consistent with our previous observations of increased Pou4f2 mRNA in stably Wt1-transfeced HEK293 cells [EMBO J. 21 (2002) 1398], endogenous Pou4f2 was also elevated at the protein level in the HEK293 transfectants as well as in U2OS osteosarcoma cells that expressed an inducible Wt1 isoform. Transient co-transfection of a Wt1 expression construct activated a Pou4f2 promoter-reporter construct approximately 4-fold. Stimulation of the Pou4f2 promoter required a Wt1 binding element that was similar to a degenerative consensus site previously identified in other Wt1 responsive genes. Double-immunofluorescent labeling revealed co-expression of Pou4f2 and Wt1 in glomerular podocytes of adult kidney and in developing retinal ganglion cells of mouse embryos. Pou4f2 immunoreactivity was absent from the retinas of Wt1(-/-) embryos. In conclusion, we identified Pou4f2 as a novel downstream target gene of Wt1. Co-localization of both proteins in glomerular podocytes of the kidney and in developing retinal ganglion cells suggests a role for Wt1-Pou4f2 interaction in these tissues.  相似文献   

5.
6.
Photosynthesis and growth to maturity of antisense ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase Arabidopsis thaliana with reduced concentrations of activase relative to wild-type (Wt) plants were measured under low (200 mumol m-2 s-1) and high (600 mumol m-2 s-1) photosynthetic photon flux density growing conditions. Both growth and photosynthesis were significantly reduced in an Arabidopsis clone (R100) with 30 to 40% Wt activase, an effect that was more pronounced in high light. The aboveground biomass of the antisense clone R100 reached 80% of Wt under low light and 65% of Wt under high light. Decreased growth in the antisense plants was attributed to reduced relative rates of growth and leaf area expansion early in development; all plants attained similar values of relative rates of growth and leaf elongation by 21 d after planting. Reductions in photosynthesis were attributed to decreased Rubisco activation in the antisense plants. Rubisco constituted about 40% of total soluble protein in both Wt and clone R100 under both light regimes. Activase content was 5% and 1.4% of total soluble protein in Wt and clone R100, respectively, and also was unaffected by growth irradiance. The stoichiometry of Rubisco to activase was estimated at 20 Rubisco active sites per activase tetramer in Wt Arabidopsis and 60 to 80 in the transgenic clone R100. We conclude that Wt Arabidopsis does not contain Rubisco activase in great excess of the amount required for optimal growth.  相似文献   

7.
8.
The interferon-inducible, RNA-dependent protein kinase (PKR) is activated by autophosphorylation, a process mediated by double-stranded RNA. A catalytically deficient, histidine-tagged mutant PKR protein [His-PKR(K296R)] was used as the substrate for characterization of the intermolecular phosphorylation catalyzed by purified wild-type PKR [PKR(Wt)]. The intermolecular autophosphorylation of His-PKR(K296R) by PKR(Wt) was RNA dependent. Excess His-PKR(K296R) substrate inhibited both the auto- and the trans-phosphorylation activities of PKR(Wt). Inhibition of PKR(Wt) by His-PKR(K296R) was relieved by higher concentrations of activator double-stranded RNA. Phosphopeptide analysis revealed that the sites of intermolecular autophosphorylation in His-PKR(K296R) were very similar, if not identical, to the sites that were autophosphorylated in PKR(Wt) and suggest a multiple of four major phosphorylation sites per PKR molecule.  相似文献   

9.
Nestin is an intermediate filament protein originally described in neural stem cells and a variety of progenitor cells. More recently, nestin was detected in rat kidney podocytes. We show here that nestin is expressed in a developmentally regulated pattern in the kidney. Nestin was detected by immunohistochemistry in the condensing mesenchyme surrounding the ureter, in developing glomeruli, in podocytes of the adult kidney, and in a podocyte cell line. Nestin shared a striking overlap in expression with the Wilms' tumor suppressor Wt1. Nestin was significantly upregulated in a cell line with inducible Wt1 expression upon induction of Wt1. Cotransfection experiments in human embryonic kidney cells (HEK293) revealed stimulation of a nestin intron 2 enhancer element up to six-fold by the Wt1(-KTS) splice variant. Nestin expression was significantly reduced in an inducible mouse model of glomerular disease. This model is based on podocyte-specific overexpression of Pax2 and associated with a loss of Wt1 expression. Furthermore, also in the developing heart, nestin was found in an overlapping pattern with Wt1 in the epicardium and the forming coronary vessels. Strikingly, in the hearts of Wt1 knockout mice, nestin was barely detectable compared with the hearts of wild-type embryos. Our results show that nestin is expressed at different stages of kidney and cardiac development and suggest that its expression in these organs might be regulated by the Wilms' tumor suppressor Wt1.  相似文献   

10.
11.
Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice.  相似文献   

12.
Nine-day-old harlequin (Hq) mice carrying the hypomorphic apoptosis-inducing factor (AIF)(Hq) mutation expressed 60% less AIF, 18% less respiratory chain complex I and 30% less catalase than their wild-type (Wt) littermates. Compared with Wt, the infarct volume after hypoxia-ischemia (HI) was reduced by 53 and 43% in male (YX(Hq)) and female (X(Hq)X(Hq)) mice, respectively (P<0.001). The Hq mutation did not inhibit HI-induced mitochondrial release of cytochrome c or activation of calpain and caspase-3. The broad-spectrum caspase inhibitor quinoline-Val-Asp(OMe)-CH(2)-PH (Q-VD-OPh) decreased the activation of all detectable caspases after HI, both in Wt and Hq mice. Q-VD-OPh reduced the infarct volume equally in Hq and in Wt mice, and the combination of Hq mutation and Q-VD-OPh treatment showed an additive neuroprotective effect. Oxidative stress leading to nitrosylation and lipid peroxidation was more pronounced in ischemic brain areas from Hq than Wt mice. The antioxidant edaravone decreased oxidative stress in damaged brains, more pronounced in the Hq mice, and further reduced brain injury in Hq but not in Wt mice. Thus, two distinct strategies can enhance the neuroprotection conferred by the Hq mutation, antioxidants, presumably compensating for a defect in AIF-dependent redox detoxification, and caspase inhibitors, presumably interrupting a parallel pathway leading to cellular demise.  相似文献   

13.
14.
15.
16.
17.
Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 +/- 0.22 and 5.22 +/- 0.39 vs. 3.99 +/- 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 +/- 65 and 1,910 +/- 115 vs. 1,590 +/- 67 mmol. l(-1). min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-alpha, or peroxisome proliferator-activated receptor-gamma mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.  相似文献   

18.
19.
Intracellular lipid accumulation (steatosis) and resultant lipotoxicity are key features of diabetic cardiomyopathy. Since cardiac hormone-sensitive lipase (HSL) is activated in diabetic mice, we sought to explore a pathophysiological function of cardiac HSL in the development of diabetic cardiomyopathy. Transgenic (Tg) mice with heart-specific HSL overexpression were generated, and cardiac histology, function, lipid profile, and gene expressions were analyzed after induction of diabetes by streptozotocin. Electron microscopy showed numerous lipid droplets in wild-type (Wt) hearts after 3 wk of diabetes, whereas Tg mice showed no lipid droplet accumulation. Cardiac content of acylglycerides was increased approximately 50% with diabetes in Wt mice, whereas this was blunted in Tg hearts. Cardiac lipid peroxide content was twofold lower in Tg hearts than in Wt hearts. The mRNA expressions for peroxisome proliferator-activated receptor-alpha, genes for triacylglycerol synthesis, and lipoprotein lipase were increased with diabetes in Wt hearts, whereas this induction was absent in Tg hearts. Expression of genes associated with lipoapoptosis was decreased, whereas antioxidant protein metallothioneins were increased in diabetic Tg hearts. Diabetic Wt hearts showed interstitial fibrosis and increased collagen content. However, Tg hearts displayed no overt fibrosis, concomitant with decreased expression of collagens, transforming growth factor-beta, and matrix metalloproteinase 2. Notably, mortality during the experimental period was approximately twofold lower in diabetic Tg mice compared with Wt mice. In conclusion, since HSL overexpression inhibits cardiac steatosis and fibrosis by apparently hydrolyzing toxic lipid metabolites, cardiac HSL could be a therapeutic target for regulating diabetic cardiomyopathy.  相似文献   

20.
The role of glia maturation factor (GMF) in myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) was investigated using GMF-deficient (GMF-KO) mice. We demonstrate that GMF-KO mice were resistant to the MOG 35-55 peptide-induced EAE as compared to wild type (Wt) mice (two in eight versus 10 in 10). Next, we examined the effect of administration of recombinant human GMF (rGMF) on MOG 35-55 peptide-induced EAE in mice. Daily administration of rGMF, staring days 1-14, resulted in significant exacerbation of clinical symptoms. Following rGMF injections, both GMF-KO (six in eight) and Wt mice (eight in eight) developed severe EAE (maximal clinical score of 3.5-4.0) with high frequency. The histological examination revealed severe infiltration of inflammatory cells in the spinal cord of MOG-immunized Wt mice while the resistance to EAE in GMF-KO mice was characterized by the absence of inflammatory cells. Administration of rGMF in Wt mice and GMF-KO mice resulted in a significant increase in infiltrating cells in the spinal cord following MOG-immunizations. We also evaluated cytokines and chemokines production as parameters of severity of inflammation in the spinal cord of Wt versus GMF-KO mice with and without GMF-reconstitution following MOG-immunizations. Cytokines (TNF-α, IFN-γ, IL-1β, IL-6) and chemokines (CCL2, CCL3, CXCL10, GM-CSF) production were significantly greater in Wt mice than in GMF-KO mice following MOG-immunization. Furthermore, the reconstitution experiment with rGMF showed that the administration of rGMF in both, Wt mice and GMF-KO mice produced significant increase in the GMF-mediated cytokine/chemokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号