首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied common wheat alloplasmic lines differing in fertility traits, which had been obtained from the backcross progeny of barley-wheat hybrids Hordeum vulgare L. (2n = 14) x Triticum aestivum L. (2n = 42), using molecular analysis and chromosome C-banding. It was found that the nuclei of all alloplasmic lines studied, regardless of their fertility traits, contained only the common wheat chromosomes (2n = 42). The formation of line L-79(10)(3)F6, stable for self-fertility, from line L-79(10)(3)F6 was accompanied by changes of the proportions of simple sequence repeats of the parental common wheat varieties in the nuclear genome. The presence of barley genome fragments in line accessions with incomplete self-fertility was shown by RAPD. Heteroplasmy for mitochondrial genome loci was detected in these lines with the use of primers specific to the tMet-18S-5S repeat of mitochondrial ribosomal genes.  相似文献   

2.
We studied some features of the development of self-fertile 42-chromosome lines on the base of self-pollination progeny of 46-chromosome plants obtained by backcrossing of barley--wheat hybrids Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) x Triticum aestivum L. (2n = 42). The stabilization of karyotypes, resulting in 42-chromosome plants of the wheat type was generally completed by generation BC1F10. The plants of all self-pollination progenies, including BC1F10, showed some phenotypic traits characteristic of wild barley. Plants of BC1F10 with the chromosome sets 2n = 42 and 2n = 42 + t were analyzed by RAPD with a set of 115 primers. Fragments of the wild barley genome were detected in RAPD patterns with 19 primers. Cross-hybridization confirmed that these fragments belonged to the wild barley genome. We raised four phenotypically different 42-chromosome lines from grains obtained from plants of generation BC1F10, and these lines proved to be cytogenetically stable and self-fertile when grown in the field.  相似文献   

3.
Using RELP analysis with three probes homologous to specific regions of mitochondrial DNA genes and PCR analysis of the mitochondrial recombining-repeat-sequence 18S/5S region of cereals, five alloplasmic wheat lines of different origin and fertility expression were studied. These lines are self-pollinated progeny of BC1-BC4 generations of barley-wheat hybrids Hordeum geniculatum All. (2n = 28) x Triticum aestivum L. (2n = 42). It was found that recombinant alloplasmic lines characterized by partial fertility contain either maternal (barley) DNA fragments or maternal and paternal (wheat) DNA fragments simultaneously (heteroplasmy). In lines with stable expression of self-fertility, fragments of only paternal mitochondrial DNA were detected. It is assumed that in alloplasmic lines, there is the interrelation between the presence of definite fragments of the mitochondrial genome belonging to either parental type and fertility expression.  相似文献   

4.
Summary Starch gel electrophoresis with two different buffer systems and several substrates and inhibitors have been used to study the electrophoretic variability of esterases in leaves of cultivars of Triticum aestivum. Each one of the buffer systems showed different levels of variability, according to the electrophoretic patterns. At the same time green and etiolated leaves showed different patterns in each buffer system. The variability was dependent upon the developmental stage of the leaves. According to the results from chromosomal location, the genes controlling esterases in green leaves were located in homoeology group 3, while the genes controlling esterases in etiolated leaves were in homoeology group 6. But both esterase isozymes showed a similar electrophoretic migration and a similar reponse to substrates and inhibitors. The possible origin of both sets of genes due to an interchromosomal duplication is discussed.  相似文献   

5.
Summary Genetic variability of endosperm esterase has been studied in 42 cultivars of Triticum aestivum L. 2n=6x=42. Different techniques, including sequential electrophoresis and electrofocusing, have been used with various substrates and esterase inhibitors. The electrophoretic patterns in each cultivar are described. Chromosomal location using the nullitetrasomic and ditelosomic lines of Chinese Spring was carried out in order to relate and/or locate the esterase genes to specific chromosomes. Most of the esterase isozymes located were in the long arm of the chromosomes of the homoeology group 3; but we have found six located in the short arms, five of them in the chromosome 3AS and one in the 3DS. This location increases the number of esterase genes described, because no esterase genes had been described so far in short arms of chromosomes of the homoeology group 3. The genetic control is discussed and, according to our results, between 12 and 15 loci, organized in five compound loci, control the endosperm esterases in wheat. Also one modifier gene modifying the mobility of two esterase bands and present in all the cultivars studied is postulated.This work was supported by a personal grant (L. Rebordinos) from the P.F.P.I. and by an institutional grant from the C.A.I.C.Y.T. (PB85-0153)  相似文献   

6.
Genomic in situ hybridization (GISH) has been used to study characteristics of the formation of alloplasmic lines detected among self-pollinated backcrossed progeny (BC1F5-BC1F8) of barley--wheat amphiploids [Hordeum geniculatum All. (2n = 28) x Triticum aestivum L. (2n = 42)] (2n = 70). The chromosome material of the wild barley H. geniculatum has been shown to contribute to these lines. For example, fifth-generation plants (BC1F5) had genotypes (2n = 42w + 2g), (2n = 42w + 1g + 1tg), and (2n = 41w + 1g), where w is common wheat chromosomes, g is barley (H. geniculatum) chromosomes, and tg is the telocentric chromosome of wild barley. Beginning from the BC1F6 generation, alloplasmic telocentric addition lines (2n = 42 + 2tg) and (2n = 42 + 1tg) appear. This lines has been found cytogenetically unstable. The progeny of each of these cytological types include not only the (2n = 42 + 2tg) and (2n = 42 + 2tg) addition plants, but also plants with the monosomic (2n = 41 + 1tg) and the disomic (2n = 40 + 2tg) substitutions, as well as the (2n = 41 + 2tg) plants, which lack one wheat chromosome and have two telocentric barley chromosomes. It has been demonstrated that the selection for well-filled grains favors the segregation of telocentric addition lines (2n = 42 = 2tg) and (2n = = 42 + 1tg).  相似文献   

7.
M Molnár-Láng  G Linc  A Logojan  J Sutka 《Génome》2000,43(6):1045-1054
New winter wheat (Triticum aestivum L.) x winter barley (Hordeum vulgare L.) hybrids produced using cultivated varieties (wheat 'Martonvásári 9 krl'(Mv9 krl) x barley 'Igri', Mv9 krl x 'Osnova', 'Asakazekomugi' x 'Manas') were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Meiotic analysis of the hybrids Mv9 krl x 'Igri' and 'Asakazekomugi' x 'Manas' and their in vitro regenerated progenies with the Feulgen method revealed 1.59 chromosome arm associations per cell in both initial hybrids. The number of chromosome arm associations increased after in vitro culture to 4.72 and 2.67, respectively, in the two combinations. According to the genomic in situ hybridization (GISH) analysis, wheat-barley chromosome arm associations made up 3.6% of the total in the initial Mv9 krl x 'Igri' hybrid and 6.6% and 16.5% of the total in in vitro regenerated progenies of the 'Asakazekomugi' x 'Manas' and Mv9 krl x 'Igri' hybrids, respectively. The demonstration by GISH of wheat-barley chromosome pairing in the hybrids and especially in their in vitro regenerated progenies proves the possibility of producing recombinants between these two genera, and thus of transferring useful characters from barley into wheat. In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants.  相似文献   

8.
Summary Hordeum vulgare L. (2n=2x=14) was hybridized with Elymus patagonicus Speg. (2n=6x=42). The hybrid had 28 chromosomes, genomically represented as HSH1H2, and was perennial with a codominant phenotype. The chromosomes were meiotically associated as 19.6 univalents + 0.004 ring bivalents + 2.6 rod bivalents + 0.8 trivalents + 0.14 quadrivalents in 1,129 meiocytes, with a chiasma frequency of 4.77 per cell. The bivalent pairing presumably is an autosyndetic but modified expression of the H1H2 genomes of E. patagonicus, since ring bivalents were rare. This does not preclude the association of the H. vulgare H genome chromosomes with either H1 and/or H2 genomes of E. patagonicus to form bivalent or multivalent associations. A further evaluation of the genome homologies of H. vulgare, H. bogdanii, E. canadensis and E. patagonicus is proposed.  相似文献   

9.
The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between common barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters--frequency of set grains and frequency of grains with embryos--was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1 R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare x T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between common barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.  相似文献   

10.
In the present study, the cytogenetic effects of the herbicide Logran on root tip cells of Triticurn aestivum L. and Hordeum vulgare L. and changes of total protein content in root tip meristems were studied. The seeds of plants were treated with various concentrations of Logran (125, 250, 500 microg/ml) for 3 and 6 h. The percentages of abnormal cells were seen to increase with increasing treatment period and concentrations. The most dominant types of observed abnormalities were C-mitosis, distributed metaphase and anaphase, stickiness. All the used concentrations of Logran significantly induced a number of chromosomal aberrations in root tip cells of Hordemrn vulgare L. and Triticum aestivum L. Logran also decreased mitotic index. The decrease of protein content in root tips of Triticum aestivum L. is significant at all the treated concentrations and treatment periods when compared with control.  相似文献   

11.
Interspecific hybridisations between Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass) have been carried out to transfer desirable traits, such as disease resistance, from the wild species into barley. In this paper we report the results of an extensive backcrossing programme of triploid hybrids (H. vulgare 2x x H. bulbosum 4x) to two cultivars of H. vulgare. Progenies were characterised cytologically and by restriction fragment length polymorphism analysis and comprised (1) haploid and diploid H. vulgare plants, (2) hybrids and aneuploids, (3) single and double monosomic substitutions of H. bulbosum chromosomes into H. vulgare and (4) chromosomal rearrangements and recombinants. Five out of the seven possible single monosomic chromosome substitutions have now been identified amongst backcross progeny and will be valuable for directed gene introgression and genome homoeology studies. The presence amongst progeny of 1 plant with an H. vulgare-H. bulbosum translocated chromosome and one recombinant indicates the value of fertile triploid hybrids for interspecific gene introgression.  相似文献   

12.
Both wheat and barley belong to tribe Triticeae and are closely related. High-density detailed comparison of physical and genetic linkage maps revealed that wheat genes are present in physically small gene-rich regions (GRRs). One of the largest GRRs is located around fraction length 1.0 of the long arm of wheat homoeologous group 2 chromosomes termed the "2L1.0 region." The main objective of this study was to analyze the structural and functional organization of the 2L1.0 region in barley in comparison to wheat. Using the 29 physically mapped RFLP markers for the region, wheat and barley consensus genetic linkage maps of the 2L1.0 region were generated by combining information from 18 wheat and 7 barley genetic linkage maps. Comparative analysis using these consensus maps and other available wheat and barley mapping resources identified 227 DNA markers and ESTs for the region. The region accounted for 58% of the genes and 68% of the arm's recombination in wheat. However, the corresponding region in barley accounted for about 42% of the genes and 81% of the recombination. The kb/cM ratio for the region was 122 in barley compared to 244 in wheat. Distribution of genes and recombination varied between the two species even though the gene order and density were similar.  相似文献   

13.
Individual plants from the BC1F5 and BC1F6 backcross progenies of barley--wheat (= H. geniculatum All.) (2n = 28) x T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H'L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found.  相似文献   

14.
Barley and wheat DNAs have been characterized by studying their kinetics of reassociation, melting properties and sedimentation behaviour in neutral CsCl gradients as well as in Cs2SO4 gradients containing Ag+ or Hg2+. In both species, reassociation kinetics have revealed the presence of approx. 76% redundant nucleotide sequences which have been grouped into very rapidly reassociating (Cot 0-0.01), rapidly reassociating (Cot 0.01-1.0) and slowly reassociating (Cot 1-100) fractions. The barley Cot 0-0.01 and Cot 0.01-1.0 fractions as well as the wheat Cot 0.01-1.0 fraction form narrow bands upon centrifugation in CsCl gradients. Under similar experimental conditions both Cot 0.01 and Cot 1.0-100 wheat fractions and the barley Cot 1.0-100 fraction form broad bands each having several shoulders. Thermal denaturation studies of most of the above reassociated fractions have shown a considerable degree of order in their duplexes with an average hyperchromicity of 21.5%. When native, high molecular weight barley DNA is centrifuged in Ag+/CS2SO4 density gradients (RF = 0.2), two satellites appear on the heavier side of the main band, as against one in the case of wheat. The two minor peaks, designated as satellites I and II, have buoyant densities of 1.702 and 1.698 g/cm3, respectively, in neutral CsCl gradients and together represent about 8-9% of total barley DNA. Upon centrifugation in Hg2+/CS2SO4 density gradients, one satellite is observed in both barley and wheat and it accounts for 1-2% of their genomes.  相似文献   

15.
Summary Chromosome pairing was studied in hybrids of (Hordeum vulgare ×Triticum aestivum) ×Secale cereale. Chiasma frequency per cell varied from 1.94 to 3.16 between the different hybrids. This variation was attributed to genetic variability in rye parents which affected homoeologous pairing. The pairing of rye chromosomes as revealed by Giemsa C-banding was a combination of nonhomologous association between rye chromosomes and associations with chromosomes of wheat and barley. Contribution No. 634 Ottawa Research Station  相似文献   

16.
The first genetic map of the wild South Ameri- can barley species Hordeum chilense is presented. The map, based on an F2 population of 114 plants, contains 123 markers, including 82 RAPDs, 13 SSRs, 16 RFLPs, four SCARs, two seed storage proteins and two STS markers. The map spans 694 cM with an average distance of 5.7 cM between markers. Six additional SSRs and seven additional SCARs which were not polymorphic were assigned to chromosomes using wheat/H. chilense addition lines. Polymorphisms were revealed by 50% of the RAPD amplifications, 13% of wheat and barley SSR primers, and 78% of the Gramineae RFLP anchor probes. The utility of SSR and RFLP probes from other Gramineae species shows the usefulness of a comparative approach as a source of markers and for aligning the genetic map of H. chilense with other species. This also indicates that the overall structure of the H. chilense linkage groups is probably similar to that of the B and D genomes of wheat and the H genome of barley. Applications of the map for tritordeum and wheat breeding are discussed. Received: 20 August 2000 / Accepted: 22 September 2000  相似文献   

17.
This paper describes the first extensive genetic map of Hordeum bulbosum, the closest wild relative of cultivated barley. H. bulbosum is valuable for haploid production in barley breeding, and because of desirable agronomic characteristics, it also has potential for trait introgression into barley. A H. bulbosum map will assist introgression and provide a basis for the identification of QTLs for crossability with barley and other potentially useful genes. The present study used a population of 111 individuals from a PB1×PB11 cross to develop a genetic linkage map of diploid H. bulbosum (2n=2x=14) based on barley, wheat and other ”anchor” cereal RFLP markers previously mapped in other species. Because of the cross-pollinating and highly polymorphic nature of H. bulbosum, up to four alleles showed segregation at any one locus, and five different segregation types were found. This enabled maps to be developed for the PB1 and PB11 parents, as well as a combined map. In total, 136 RFLP loci were mapped with a marker coverage of 621 cM. The markers were generally colinear with barley but H. bulbosum had less recombination in the centromeric regions and similar or more in the distal regions. Cytological studies on pollen mother cells at metaphase-I showed marked distal localization of chiasmata and a frequency consistent with the genetic map length. This study showed that H. bulbosum was highly polymorphic, making it suitable for trait analysis and supplementing maps of barley. Received: 20 November 2000 / Accepted: 5 January 2001  相似文献   

18.
At present, little is known about the phytases of plant seeds in spite of the fact that this group of enzymes is the primary determinant for the utilization of the major phosphate storage compound in seeds, phytic acid. We report the cloning and characterization of complementary DNAs (cDNAs) encoding one of the groups of enzymes with phytase activity, the multiple inositol phosphate phosphatases (MINPPs). Four wheat cDNAs (TaPhyIIa1, TaPhyIIa2, TaPhyIIb and TaPhyIIc) and three barley cDNAs (HvPhyIIa1, HvPhyIIa2 and HvPhyIIb) were isolated. The open reading frames ranged from 1548 to 1554 bp and the level of homology between the barley and wheat proteins ranged from 90.5% to 91.9%. All cDNAs contained an N-terminal signal peptide encoding sequence, and a KDEL-like sequence, KTEL, was present at the C-terminal, indicating that the enzyme was targeted to and retained within the endoplasmic reticulum. Expression of TaPhyIIa2 and HvPhyIIb in Escherichia coli revealed that the MINPPs possessed a significant phytase activity with narrow substrate specificity for phytate. The pH and temperature optima for both enzymes were pH 4.5 and 65 degrees C, respectively, and the K(m) values for phytate were 246 and 334 microm for the wheat and barley recombinant enzymes, respectively. The enzymes were inhibited by several metal ions, in particular copper and zinc. The cDNAs showed significantly different temporal and tissue-specific expression patterns during seed development and germination. With the exception of TaPhyIIb, the cDNAs were present during late seed development and germination. We conclude that MINPPs constitute a significant part of the endogenous phytase potential of the developing and germinating barley and wheat seeds.  相似文献   

19.
We present the first genetic map of wild rice (Zizania palustris L., 2n=2x=30), a native aquatic grain of northern North America. The map is composed principally of previously mapped RFLP (restriction fragment length polymorphism) genetic markers from rice (Oryza sativa 2n=2x=24). The map is important as a foundation for genetic and crop improvement studies, as well as a reference for genome organization comparisons among Gramineae species. A comparative mapping approach with rice is especially useful because wild rice is grouped in the same subfamily, Oryzoideae, and no other mapping comparison has yet been made within the subfamily. As rice is the reference point for mapping and gene cloning in cereals, establishing a consensus map within the subfamily identifies conserved and unique regions. The genomes of wild rice and rice differ in total DNA content (wild rice has twice that of rice) and chromosome pairs (wild rice=15 versus rice=12). The wild rice linkage map reported herein consists of 121 RFLP markers on 16 linkage groups spanning 1805 cM. Two linkage groups consist of only two markers. Colinear markers were found representing all rice linkage groups except #12. The majority of rice loci mapped to colinearly arranged arrays in wild rice (92 of 118). Features of the map include duplication of portions of three rice linkage groups and three possible translocations. The map gives basic information on the composition of the wild rice genome and provides tools to assist in the domestication of this important food source. Received: 25 August 1998 / Accepted: 20 February 1999 (Corrected version. Originally published in TAG 99:793–799)  相似文献   

20.
We present the first genetic map of wild rice (Zizania palustris L., 2n=2x=30), a native aquatic grain of northern North America. This map is composed principally of previously mapped RFLP (restriction fragment length polymorphism) genetic markers from rice (Oryza sativa 2n=2x=24). The map is important as a foundation for genetic and crop improvement studies as well as a reference for genome organization comparisons among species of Gramineae. A comparative mapping approach with rice is especially useful because wild rice is grouped in the same subfamily, Oryzoideae, and no other mapping comparison has yet been made within the subfamily. As rice is the reference point for mapping and gene cloning in cereals, establishing a consensus map within the subfamily identifies conserved and unique regions. The genomes of wild rice and rice differ in total DNA content (wild rice has twice that of rice) and the number of chromosome pairs (wild rice=15 versus rice=12). The wild rice linkage map reported herein consists of 121 RFLP markers on 16 linkage groups spanning 1805 cM. Two linkage groups consist of only two markers. Colinear markers were found representing all rice linkage groups except #12. The majority of rice loci mapped to colinearly arranged arrays in wild rice (92 of 118). Features of the map include duplication of portions of three rice linkage groups and three possible translocations. The map gives basic information on the composition of the wild rice genome and provides tools to assist in the domestication of this important food source. Received: 25 August 1998 / Accepted: 20 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号