首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.  相似文献   

2.
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations <300 nM but was increased in amplitude when external Ca(2+) was substituted with Ba(2+). Both Ni(2+) and mibefradil reduced the T current with an IC(50) = 7 +/- 1 microM and approximately 40 nM, respectively. Spontaneous electrical activity recorded with intracellular electrodes from strips of rabbit urethra consisted of complexes comprising a series of spikes superimposed on a slow spontaneous depolarization (SD). Inhibition of T current reduced the frequency of these SDs but had no effect on either the number of spikes per complex or the amplitude of the spikes. In contrast, application of nifedipine failed to significantly alter the frequency of the SD but reduced the number and amplitude of the spikes in each complex.  相似文献   

3.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

4.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

5.
The regulation of intracellular calcium by cholinergic agonists was investigated in the human neuroblastoma SH-SY5Y, loaded with fura-2. The resting free Ca2+ concentration in this cell line was 199 +/- 14 nM (mean +/- SEM, n = 19). At 1 mM extracellular Ca2+, high concentrations of carbachol and acetylcholine evoked a biphasic change in intracellular Ca2+ concentration, consisting of a transient initial peak followed by a decline to a plateau that was significantly higher than the basal level. Carbachol (0.5 mM) and acetylcholine (10 microM) caused a maximal increase in the intracellular Ca2+ concentration, reaching a peak of 465 +/- 52 (mean +/- SEM, n = 12) and 422 +/- 48 nM (mean +/- SEM, n = 7), respectively, in less than 4 s. This initial calcium transient declined to a plateau of 268 +/- 36 and 240 +/- 27 nM for carbachol and acetylcholine, respectively, in approximately 40 s. The plateau persisted until the agonist was displaced by the addition of antagonist. Atropine, hexahydrosiladifenidol (HHSD), pirenzepine, and methoctramine inhibited the carbachol-evoked initial calcium transient with Ki values of 0.85 +/- 0.05, 8.3 +/- 1.6, 411 +/- 36, and 240 +/- 46 nM (mean +/- SEM, n = 3), respectively, and the acetylcholine-induced initial calcium transient with Ki values of 0.48 +/- 0.18, 13.5 +/- 8.5, 192 +/- 32, and 414 +/- 25 nM (mean +/- SEM of two experiments), respectively, results suggesting that an M3 muscarinic receptor was predominantly mediating these effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Wakabayashi H  Schmidt KM  Fay PJ 《Biochemistry》2002,41(26):8485-8492
Previously, we demonstrated that Ca(2+) was necessary for the generation of cofactor activity following reconstitution of factor VIII from its isolated light chain (LC) and heavy chain (HC) but that Ca(2+) did not affect HC-LC binding affinity (Wakabayashi et al. (2001) Biochemistry 40, 10293-10300). Titration of EDTA-treated factor VIII with Ca(2+) followed by factor Xa generation assay showed a two-site binding pattern, with indicated high-affinity (K(d) = 8.9 +/- 1.8 microM) and low-affinity (K(d) = 4.0 +/- 0.6 mM) sites. Analysis by equilibrium dialysis using (45)Ca and <400 microM free Ca(2+) verified a high-affinity binding (K(d) = 18.9 +/- 3.7 microM). Preincubation of either HC or LC with 6 mM Ca(2+) followed by reassociation with the untreated complementary chain in the presence of 0.12 mM Ca(2+) failed to generate significant cofactor activity (<0.5 nM min(-1) (nM LC)(-1)). However, pretreatment of both HC and LC with 6 mM Ca(2+) followed by reassociation (at 0.12 mM Ca(2+)) generated high activity (7.5 +/- 0.4 nM min(-1) (nM LC)(-1)). Progress curves for activity regain following factor VIII-Ca(2+) association kinetics fitted well to a series reaction scheme rather than one of simple association (p < 0.0001), suggesting a multistep process which may include a Ca(2+)-dependent conformational change. These results suggest that factor VIII contains two Ca(2+) binding sites with different affinities and that active factor VIII can be reconstituted from HC and LC only when both chains are preactivated by Ca(2+).  相似文献   

7.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

8.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

9.
The perivascular sensory nerve (PvN) Ca(2+)-sensing receptor (CaR) is implicated in Ca(2+)-induced relaxation of isolated, phenylephrine (PE)-contracted mesenteric arteries, which involves the vascular endogenous cannabinoid system. We determined the effect of inhibition of diacylglycerol (DAG) lipase (DAGL), phospholipase A(2) (PLA(2)), and cytochrome P-450 (CYP) on Ca(2+)-induced relaxation of PE-contracted rat mesenteric arteries. Our findings indicate that Ca(2+)-induced vasorelaxation is not dependent on the endothelium. The DAGL inhibitor RHC 802675 (1 microM) and the CYP and PLA(2) inhibitors quinacrine (5 microM) (EC(50): RHC 802675 2.8 +/- 0.4 mM vs. control 1.4 +/- 0.3 mM; quinacrine 4.8 +/- 0.4 mM vs. control 2.0 +/- 0.3 mM; n = 5) and arachidonyltrifluoromethyl ketone (AACOCF(3), 1 microM) reduced Ca(2+)-induced relaxation of mesenteric arteries. Synthetic 2-arachidonoylglycerol (2-AG) and glycerated epoxyeicosatrienoic acids (GEETs) induced concentration-dependent relaxation of isolated arteries. 2-AG relaxations were blocked by iberiotoxin (IBTX) (EC(50): control 0.96 +/- 0.14 nM, IBTX 1.3 +/- 0.5 microM) and miconazole (48 +/- 3%), and 11,12-GEET responses were blocked by IBTX (EC(50): control 55 +/- 9 nM, IBTX 690 +/- 96 nM) and SR-141716A. The data suggest that activation of the CaR in the PvN network by Ca(2+) leads to synthesis and/or release of metabolites of the CYP epoxygenase pathway and metabolism of DAG to 2-AG and subsequently to GEETs. The findings indicate a role for 2-AG and its metabolites in Ca(2+)-induced relaxation of resistance arteries; therefore this receptor may be a potential target for the development of new vasodilator compounds for antihypertensive therapy.  相似文献   

10.
The Ca(2+) dissociation constant (K(d)) of Fluo-3 was determined using confocal fluorescence microscopy in two different situations: (i) within the cytosol of a permeabilised cardiomyocyte; and (ii) in an intact cardiomyocyte after incubation with the acetoxymethyl ester form of Fluo-3 (AM). Measurements were made on isolated rabbit ventricular cardiomyocytes after permeabilisation by a brief treatment with beta-escin (0.1mg/ml) and equilibration with 10 microM Fluo-3. The K(d) of Fluo-3 within the cytosol was not significantly different from that in free solution (558 +/- 15 nM, n=6). Over a range of cytoplasmic [Ca(2+)], the minimum [Ca(2+)] values between Ca(2+) waves was relatively constant despite changes in wave frequency. After loading intact cardiomyocytes with Fluo-3 by incubation with the -AM, spontaneous Ca(2+) waves were produced by incubation with strophanthidin (10 microM). By assuming a common minimum [Ca(2+)] in permeabilised and intact cells, the intracellular K(d) of Fluo-3 in intact myocytes was estimated to be 898 +/-64 nM (n=6). Application of this K(d) to fluorescence records shows that Ca(2+) waves in intact cells have similar amplitudes to those in permeabilised cells. Stimulation of cardiac myocytes at 0.5 Hz in the absence of strophanthidin (room temperature) resulted in a Ca(2+) transient with a maximum and minimum [Ca(2+)] of 1190 +/- 200 and 158 +/- 30 nM (n=11), respectively.  相似文献   

11.
The early effects of metabolic inhibition on intracellular Ca(2+) concentration ([Ca(2+)](i)), Ca(2+) current, and sarcoplasmic reticulum (SR) Ca(2+) content were studied in single pacemaker cells from the sinus venosus of the cane toad. The amplitude of the spontaneous elevations of systolic [Ca(2+)](i) (Ca(2+) transients) was reduced after 5-min exposure to 2 mM NaCN from 338 +/- 30 to 189 +/- 37 nM (P < 0.005, n = 9), and the spontaneous firing rate was reduced from 27 +/- 2 to 12 +/- 4 beats/min (P < 0.002, n = 9). It has been proposed that CN(-) acts by inhibition of cytochrome P-450, resulting in a reduction of cAMP and Ca(2+) current. To test this proposal, we used clotrimazole, a cytochrome P-450 inhibitor, which also decreased the Ca(2+) transients and firing rate. CN(-) caused an insignificant fall of Ca(2+) current (23 +/- 11%) but a substantial reduction of SR Ca(2+) content (by 65 +/- 5%), whereas clotrimazole produced a larger reduction of Ca(2+) current and did not affect the SR Ca(2+) content. Thus the main effect of CN(-) does not seem to be through inhibition of cytochrome P-450. In conclusion, CN(-) appears to reduce Ca(2+) release from the SR mainly by reducing SR Ca(2+) content. A likely cause of the decreased SR content is reduced Ca(2+) uptake by the SR pump.  相似文献   

12.
In the lung, chronic hypoxia (CH) causes pulmonary arterial smooth muscle cell (PASMC) depolarization, elevated endothelin-1 (ET-1), and vasoconstriction. We determined whether, during CH, depolarization-driven activation of L-type Ca(2+) channels contributes to 1) maintenance of resting intracellular Ca(2+) concentration ([Ca(2+)](i)), 2) increased [Ca(2+)](i) in response to ET-1 (10(-8) M), and 3) ET-1-induced contraction. Using indo 1 microfluorescence, we determined that resting [Ca(2+)](i) in PASMCs from intrapulmonary arteries of rats exposed to 10% O(2) for 21 days was 293.9 +/- 25.2 nM (vs. 153.6 +/- 28.7 nM in normoxia). Resting [Ca(2+)](i) was decreased after extracellular Ca(2+) removal but not with nifedipine (10(-6) M), an L-type Ca(2+) channel antagonist. After CH, the ET-1-induced increase in [Ca(2+)](i) was reduced and was abolished after extracellular Ca(2+) removal or nifedipine. Removal of extracellular Ca(2+) reduced ET-1-induced tension; however, nifedipine had only a slight effect. These data indicate that maintenance of resting [Ca(2+)](i) in PASMCs from chronically hypoxic rats does not require activation of L-type Ca(2+) channels and suggest that ET-1-induced contraction occurs by a mechanism primarily independent of changes in [Ca(2+)](i).  相似文献   

13.
Components of excitation-contraction (EC)-coupling were compared at 37 degrees C and 22 degrees C to determine whether hypothermia altered the gain of EC coupling in guinea pig ventricular myocytes. Ca(2+) concentration (fura-2) and cell shortening (edge detector) were measured simultaneously. Hypothermia increased fractional shortening (8.3 +/- 1.7 vs. 2.6 +/- 0.3% at 37 degrees C), Ca(2+) transients (157 +/- 33 vs. 35 +/- 5 nM at 37 degrees C), and diastolic Ca(2+) (100 +/- 9 vs. 60 +/- 6 nM at 37 degrees C) in field-stimulated myocytes (2 Hz). In experiments with high-resistance microelectrodes, the increase in contractions and Ca(2+) transients was accompanied by a twofold increase in action potential duration (APD). When voltage-clamp steps eliminated changes in APD, cooling still increased contractions and Ca(2+) transients. Hypothermia increased sarcoplasmic reticulum (SR) Ca(2+) stores (83 +/- 17 at 37 degrees C to 212 +/- 50 nM, assessed with caffeine) and increased fractional SR Ca(2+) release twofold. In contrast, peak Ca(2+) current was much smaller at 22 degrees C than at 37 degrees C (1.3 +/- 0.4 and 3.5 +/- 0.7 pA/pF, respectively). In cells dialyzed with sodium-free pipette solutions to inhibit Ca(2+) influx via reverse-mode Na(+)/Ca(2+) exchange, hypothermia still increased contractions, Ca(2+) transients, SR stores, and fractional release but decreased the amplitude of Ca(2+) current. The rate of SR Ca(2+) release per unit Ca(2+) current, a measure of EC-coupling gain, was increased sixfold by hypothermia. This increase in gain occurred regardless of whether cells were dialyzed with sodium-free solutions. Thus an increase in EC-coupling gain contributes importantly to positive inotropic effects of hypothermia in the heart.  相似文献   

14.
Role of mitochondria in Ca(2+) homeostasis of mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
The effects of mitochondrial Ca(2+) uptake on cytosolic Ca(2+) concentration ([Ca(2+)](c)) were investigated in mouse pancreatic acinar cells using cytosolic and/or mitochondrial Ca(2+) indicators. When calcium stores of the endoplasmic reticulum (ER) were emptied by prolonged incubation with thapsigargin (Tg) and acetylcholine (ACh), small amounts of calcium could be released into the cytosol (Delta[Ca(2+)](c)=46 +/- 6 nM, n=13) by applying mitochondrial inhibitors (combination of rotenone (R) and oligomycin (O)). However, applications of R/O, soon after the peak of Tg/Ach-induced Ca(2+) transient, produced a larger cytosolic calcium elevation (Delta[Ca(2+)](c)=84 +/- 6 nM, n=9), this corresponds to an increase in the total mitochondrial calcium concentration ([Ca(2+)](m)) by approximately 0.4 mM. In cells pre-treated with R/O or Ru360 (a specific blocker of mitochondrial Ca(2+) uniporter), the decay time-constant of the Tg/ACh-induced Ca(2+) response was prolonged by approximately 40 and 80%, respectively. Tests with the mitochondrial Ca(2+) indicator rhod-2 revealed large increases in [Ca(2+)](m) in response to Tg/ACh applications; this mitochondrial uptake was blocked by Ru360. In cells pre-treated with Ru360, 10nM ACh elicited large global increases in [Ca(2+)](c), compared to control cells in which ACh-induced Ca(2+) signals were localised in the apical region. We conclude that mitochondria are active elements of cellular Ca(2+) homeostasis in pancreatic acinar cells and directly modulate both local and global calcium signals induced by agonists.  相似文献   

15.
The intracellular calcium ([Ca(2+)](i)) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10(-8) M) caused [Ca(2+)](i) to fall in proportion to the resting [Ca(2+)](i) (r = 0. 82) of the endothelium. ANG II (10(-8) M) also inhibited both phases of the [Ca(2+)](i) response generated by bradykinin (BK, 10(-7) M), 835 +/- 201 versus 159 +/- 30 nM (peak phase) and 169 +/- 26 versus 103 +/- 14 nM (plateau phase) (means +/- SE). Luminal ANG II reduced BK (10(-7) M)-stimulated plateau [Ca(2+)](i) from 180 +/- 40 to 134 +/- 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca(2+)](i) to 113 +/- 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10(-8) M) caused [Ca(2+)](i) to fall from 352 +/- 149 to 105 +/- 37 nM. This effect occurred at a threshold ANG II concentration of 10(-10) M and was maximal at 10(-8) M. ANG II inhibited both the rate of Ca(2+) entry into [Ca(2+)](i)-depleted endothelia and the rate of Mn(2+) entry into [Ca(2+)](i)-replete endothelia. In contrast, ANG II raised [Ca(2+)](i) in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca(2+)](i) from baselines of 99 +/- 33 and 53 +/- 11 to peaks of 200 +/- 47 and 65 +/- 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca(2+)-dependent vasodilators to modulate vasomotor tone in vascular bundles.  相似文献   

16.
Ca2+ influx via voltage-dependent Ca2+ channels is known to be elicited during action potentials but possibly also occurs at the resting potential. The steady-state current through voltage-dependent Ca2+ channels and its role for the electrical activity was, therefore, investigated in pituitary GH3 cells. Applying the recently developed 'nystatin-modification' of the patch-clamp technique, most GH3 cells (18 out of 23 cells) fired spontaneous action potentials from a baseline membrane potential of 43.7 +/- 4.6 mV (mean +/- s.d., n = 23). The frequency of action potentials was stimulated about twofold by Bay K 8644 (100 nM), a Ca(2+)-channel stimulator, and action potentials were completely suppressed by the Ca(2+)-channel blocker PN 200-110 (100 nM). Voltage clamping GH3 cells at fixed potentials for several minutes and with 1 mM Ba2+ as divalent charge carrier, we observed steady-state Ca(2+)-channel currents that were dihydropyridine-sensitive and displayed a U-shaped current-voltage relation. The results strongly suggest that the observed long lasting, dihydropyridine-sensitive Ca(2+)-channel currents provide a steady-state conductivity for Ca2+ at the resting potential and are essential for the generation of action potentials in GH3 pituitary cells.  相似文献   

17.
Two-photon excitation (TPE) spectra of Fura-2, -4F, -6F, -FF, and Furaptra were characterized using a tunable (750-850 nM) ultra-short pulse laser. Two-photon fluorescence of these dyes was studied in free solution and in the cytosol of isolated rabbit ventricular cardiomyocytes. The TPE spectra of the Ca(2+)-free and Ca(2+)-bound forms of the dyes were measured in free solution and expressed in terms of the two-photon fluorescence cross section (Goppert-Meyer units). The Fura dyes displayed the same Ca(2+)-free TPE spectrum in the intracellular volume of permeabilized and intact cardiomyocytes. Fluorescence measurements over a range of laser powers confirmed the TPE of both Ca(2+)-free and Ca(2+)-bound forms of the dyes. Single-wavelength excitation at 810 nM was used to determine the effective dissociation constants (K(eff)) and dynamic ranges (R(f)) of Fura-2, -4F, -6F, -FF, and Furaptra dyes (K(eff) = 181 +/- 52 nM, 1.16 +/- 0.016 micro M, 5.18 +/- 0.3 micro M, 19.2 +/- 1 micro M, and 58.5 +/- 2 micro M; and R(f) = 22.4 +/- 3.8, 12.2 +/- 0.34, 6.3 +/- 0.17, 16.1 +/- 2.8, and 25.4 +/- 4, respectively). Single-wavelength excitation of intracellular Fura-4F resolved diastolic and peak [Ca(2+)] in isolated stimulated cardiomyocytes after calibration of the intracellular signal using reversible exposure to low (100 micro M) extracellular [Ca(2+)]. Furthermore, TPE of Fura-4F allowed continuous, long-term (5-10 min) Ca(2+) imaging in ventricular cardiomyocytes using laser-scanning microscopy without significant cellular photodamage or photobleaching of the dye.  相似文献   

18.
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.  相似文献   

19.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.  相似文献   

20.
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg(-1), I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg(-1) urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 +/- 2.42 mg dl(-1) (n = 44) and >500 mg dl(-1) (n = 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 +/- 0.05 ul min(-1) (n = 10) and 1.28 +/- 0.16 ul min(-1) (n = 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 +/- 15.41 nM (n = 15) and 130.62 +/- 17.66 nM (n = 8), respectively. CCK-8 (10(-8)M) induced a peak response of 436.55 +/- 36.54 nM (n = 15) and 409.31 +/- 34.64 nM (n = 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 +/- 0.06 nM (n = 18) and 0.86 +/- 0.04 nM (n = 10). In the presence of CCK-8 (10(-8)) [Mg2+]i in control and diabetic cells was 0.80 +/- 0.05 nM (n = 18) and 0.60 +/- 0.02 nM (n = 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号