首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attachment of the plant pathogen Agrobacterium tumefaciens to host plant cells is an early and necessary step in plant transformation and agroinfiltration processes. However, bacterial attachment behavior is not well understood in complex plant tissues. Here we developed an imaging‐based method to observe and quantify A. tumefaciens attached to leaf tissue in situ. Fluorescent labeling of bacteria with nucleic acid, protein, and vital dyes was investigated as a rapid alternative to generating recombinant strains expressing fluorescent proteins. Syto 16 green fluorescent nucleic acid stain was found to yield the greatest signal intensity in stained bacteria without affecting viability or infectivity. Stained bacteria retained the stain and were detectable over 72 h. To demonstrate in situ detection of attached bacteria, confocal fluorescent microscopy was used to image A. tumefaciens in sections of lettuce leaf tissue following vacuum‐infiltration with labeled bacteria. Bacterial signals were associated with plant cell surfaces, suggesting detection of bacteria attached to plant cells. Bacterial attachment to specific leaf tissues was in agreement with known leaf tissue competencies for transformation with Agrobacterium. Levels of bacteria attached to leaf cells were quantified over time post‐infiltration. Signals from stained bacteria were stable over the first 24 h following infiltration but decreased in intensity as bacteria multiplied in planta. Nucleic acid staining of A. tumefaciens followed by confocal microscopy of infected leaf tissue offers a rapid, in situ method for evaluating attachment of A. tumefaciens' to plant expression hosts and a tool to facilitate management of transient expression processes via agroinfiltration. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

2.
A focused approach that exploits a single plant species, namely, Arabidopsis thaliana, as a means to understand how leaf cells differentiate and the factors that govern overall leaf morphogenesis has begun to generate a significant body of knowledge in this model plant. Although many studies have concentrated on specific cell types and factors that control their differentiation, some degree of consensus is starting to be reached. However, an understanding of specific mechanisms by which cells differentiate in relation to their position, that appears to be an overriding factor in this process, is not yet in place for cell types in the Arabidopsis leaf. It is clear that perturbations in cellular development within the leaf do not necessarily have a general effect on morphogenesis. Environmental factors, particularly light, have been known to affect leaf cell differentiation and expansion, and endogenous hormones also appear to play an important role, through mechanisms that are beginning to be uncovered. It is likely that continued identification of genes involved in leaf development and their regulation in relation to positional information or other cues will lead to a clearer understanding of the control of differentiation and morphogenesis in the Arabidopsis leaf.  相似文献   

3.
The maize mutant Knotted (Kn) is characterized by hollow, finger-like outgrowths (knots) occurring mainly in the leaf blade. Portions of the ligule are displaced from the normal position to more distal locations within the blade. Knots apparently result from continued meristematic activity of isolated patches of cells surrounded by maturing tissue. Small knots appear to be centers of cell division. Epidermal cells overlying a small knot have been observed to undergo periclinal divisions. In addition to cell division, a reorientation of the axis of cell elongation is associated with knot formation. The pattern of knot distribution varies at different levels on the plant axis and within a leaf blade. From leaf 4 to leaf 10 or 11 the number of knots per leaf increases progressively, then declines in leaves initiated later. Knots always occur in association with lateral veins. The greatest number per vein occurs on the 3rd or 4th vein from the midrib. One plant developing from an X-rayed heterozygous seed possessed a sector of normal tissue bisecting the plant in a vertical plane passing through the midrib of each leaf except the top two. The normal sector was knot-free and had the ligule restored to the normal position. These observations suggest that cells with the characteristics of those from intercalary meristems occur throughout the blade in Knotted plants.  相似文献   

4.
Summary Shoot cultures and callus cultures from roots and leaves of Hemidesmus indicus R. Br (Asclepiadaceae) were established on Murashige and Skoog medium with various hormonal combinations. The production of antioxidants (lupeol, vanillin, and rutin) in shoot cultures, callus cultures derived from leaf cells and root cells, was compared with root and aerial portions of the parent plant. Shoot cultures and leaf callus cultures produced more antioxidants than root callus cultures. In vitro culture of this species might ofter an alternative method for production of these important pharmaccuticals, which would reduce the collection pressure on this rare plant.  相似文献   

5.
6.
The relationship between spatial density and size of plants is an important topic in plant ecology. The self‐thinning rule suggests a ?3/2 power between average biomass and density or a ?1/2 power between stand yield and density. However, the self‐thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log‐linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self‐thinning rule to improve light interception.  相似文献   

7.
8.
The morpho-anatomy and histochemistry of the hysteranthous leaf ofUrginea maritima (L.) Baker and its adaptive strategies to the Mediterranean climate were investigated. The leaf ofU. maritima is 714 μm thick and possesses moderate specific leaf mass (8.564 mg cm-2) and low tissue density (136.5 mg cm-3). The epidermal cells are compactly arranged and covered with cuticle. The average density of stomata in lower epidermis is higher than that of the upper one. The mesophyll cells occupy 52.96% of the total volume of the leaf, while the mesophyll intercellular spaces and the air spaces occupy 30.41%. Idioblastic cells containing raphide bundles and different phenotypes of crystalloid inclusions, embedded in polysaccharides, occur in the lower side of the mesophyll. The presence of oil droplets and lipids is evident. Bundle sheath cells are hardly visible with no chloroplasts which are a pronounced C3 plant character. Plastids containing protein crystalloid inclusions are abundant in the protophloem sieve elements.U. maritima, a deciduous plant, possesses leaves with mesophytic characters, in order to optimize its adaptation to the seasonal fluctuation of environmental conditions of the Mediterranean climate.  相似文献   

9.
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.  相似文献   

10.
Ch.  Unger  S. Kleta    G. Jandl    A. v.  Tiedemann 《Journal of Phytopathology》2005,153(1):15-26
The interaction of two selected isolates of Botrytis cinerea with bean suspension cells and bean leaf discs was compared in relation to levels of reactive oxygen intermediates (ROI). Isolate B 1.7 was arrested by a hypersensitive‐like necrosis of bean leaf tissue. According to its inability to spread and produce conidia on the bean leaf tissue it was classified as non‐aggressive. The second isolate induced a fast expanding light brownish necrosis of the leaf tissue. It was able to produce conidia on bean leaf discs and was classified as aggressive. The generation of superoxide was followed biochemically in inoculated bean cell suspensions. Both isolates induced a similar early superoxide peak approximately 18‐h post inoculation (hpi). While the non‐aggressive isolate induced a much stronger secondary superoxide burst at 33 hpi, the level of superoxide of suspension cells inoculated with the aggressive isolate was below the control level. This is the first report on the occurrence of a biphasic oxidative burst in plant cells induced by a fungal pathogen. Such a suppression of superoxide generation was also observed in bean leaf discs inoculated with the aggressive isolate. An oxidative burst‐suppressing agent was extracted from inoculated cell culture medium and determined as 2‐methyl‐succinate (2‐MS) by GC/MS analysis. The compound was detected approximately 20 hpi in the aggressive fungus–plant interaction. 2‐MS was able to suppress the hypersensitive response‐like necrosis on leaf discs as well as the second superoxide burst in suspension cells when inoculated with the non‐aggressive isolate. The early superoxide burst at 18 hpi was not affected. The results confirm the important role of enhanced production of ROI in plant resistance reactions, also for a necrotrophlike B. cinerea.  相似文献   

11.
Presence of a high-affinity binding protein for N-acetylchitooligosaccharide (fragments of chitin) elicitor in the plasma membrane from rice leaf and root cells was shown by affinity labeling experiments with an 125I-labeled N-acetylchitooligosaccharide derivative. Binding studies also showed that binding site in the leaf cells has a high affinity to highly elicitor-active, larger chitin fragments but much lower or no affinity to less elicitor-active or elicitor-inactive oligosaccharides. The amount of the binding protein in the leaf cells was slightly smaller than that in the suspension-cultured cells but much larger compared to that in the root cells. These results indicate the possible- involvement of the elicitor binding protein in the perception of the elicitor signal in intact rice plant.  相似文献   

12.
In sequentially planted oat stands, the cereal leaf beetle (CLB), Oulema melanopus (L.) (Coleoptera: Chrysomelidae: Lemini), is found in greater numbers, and lays more eggs, on later planted (younger) oats (Avena sativa L.) (Poaceae). Plant characteristics that could explain this ovipositional preference were examined in a series of experiments. Cage and open field whole plant preference tests confirmed the attraction of ovipositing females to younger oats. A cage effect illustrated the role of plant architecture (plant height) in CLB host selection. Two multiple‐choice and one no‐choice excised leaf experiments determined that characteristics of individual leaves associated with leaf insertion level (leaf number from base to apex) and age influence ovipositional site selection. Leaves of higher insertion level have higher nitrogen content, but fewer eggs are laid on those leaves. Two experiments examining the interaction between total leaf nitrogen and leaf insertion level showed that only leaf insertion level affected oviposition choice. Published literature suggests variation in secondary plant compounds cannot explain O. melanopus ovipositional preference among leaves. Grass leaves of higher insertion level have more extensively developed cells associated with tissue toughness and hardness. The data and supporting literature suggest tissue toughness and hardness are deterring oviposition on oat leaves of higher insertion level. However, newly eclosed larvae are able to feed on leaves usually avoided as oviposition sites. The explanation for this result may be a lack of correlation between host suitability and ovipositional preference.  相似文献   

13.
Chemical composition of leaves (the content of carbon, nitrogen, nonstructural carbohydrates, organic acids, mineral substances, and water) and the structure of photosynthetic apparatus (specific leaf weight, cell volume, and the number of cells per unit leaf area) were investigated for 18 species of aquatic plants featuring various degrees of contact with aqueous environment and sediment. The rooted hydrophytes with floating leaves were characterized by comparatively high content of carbon and nitrogen (437 and 37 mg/g dry wt, respectively) and by low concentration of nonstructural carbohydrates, mineral substances, and organic acids (161, 54, and 60 mg/g dry wt, respectively). Unlike rooted plants, the free-floating nonrooted hydrophytes had characteristically higher content of nonstructural polysaccharides and mineral substances (by a factor of 1.3 and 1.6, respectively), while the leaf nitrogen content was 1.4 times lower, and the proportion of soluble carbohydrates in the total content of nonstructural carbohydrates was rather low (9%). The chemical composition of leaves in submerged rooted hydrophytes was intermediate between those for rooted hydrophytes with floating leaves and for nonrooted free plants. We found reliable positive correlations between the volume of photosynthesizing cells and the leaf content of organic acids (r = 0.69), as well as between specific leaf weight, the number of photosynthesizing cells per unit leaf area, and carbon content (r = 0.67 and r = 0.62, respectively). The content of nitrogen and nonstructural carbohydrates in hydrophytes was unrelated to structural characteristics of photosynthetic apparatus and depended on the absence or presence of plant attachment to the sediment. It is concluded that the structural traits of photosynthetic apparatus and the leaf chemical composition in hydrophytes featuring different degrees of plant contact with water and sediment reflect the specificity of plant adaptation to complex conditions of their habitats.  相似文献   

14.
A monoclonal antibody, 12C9, an anti-idiotypic mimic of dothistromin, a toxin produced by Dothistroma pini, was found to label the cell wall of sieve elements in a number of different plant tissues and species. The antibody labeled apple leaf tissue, tobacco leaf mid vein, leaf and meristem, and Coprosma robusta leaf mid vein. Labeling was restricted to cell walls of sieve elements and did not label the companion cells or the lumen of the cells. The antibody labeled over a wide range of dilutions. This antibody could be used to differentiate sieve elements from other types of phloem. It could also be used to co-localize sieve elements and microorganisms such as phytoplasmas stained with DAPI.  相似文献   

15.
Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate‐vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open‐top chambers (OTCs) to passively warm vegetation by 1–2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf δ15N. Long‐term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect δ15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.  相似文献   

16.
Thin sections of midribs from a Fragaria vesca UC-5 indicator plant infected by leaf grafting with a German isolate of strawberry crinkle contained typical rhabdovirus-like particles within cytoplasmic vesicles. Masses of rhabdovirus-like particles with a dark stained core and a transparent surrounding layer were seen in necrotic cells surrounding the vascular bundle and in necrotic leaf parenchyma.  相似文献   

17.
《Journal of bryology》2013,35(4):293-299
Abstract

We studied infraspecific morphological variation within European Dicranum majus Sm. A principal components analysis based on six leaf characters scored in 82 specimens revealed two distinct plant types. Plants with bistratose submarginal upper leaf lamina cells, numerous spine-like dorsal lamina projections, a costa that is dorsally rough far down and has two layers of guide cells in its basal part, and falcate or strongly falcate, long leaves are mainly of a relatively southern origin. Specimens with a unistratose, smooth upper leaf lamina, a costa that is dorsally rough only above and has one layer of guide cells, and with slightly curved to straight, short leaves were only collected in northern Europe. Even if most authors do not formally recognize variation within D. majus, our results suggest that the two kinds of plants should be recognized at least at the variety level. In view of the confusing nomenclature in Dicranum it is beyond the scope of this paper to find a name for the northern plant. Type material of D. majus var. orthophyllum A. Braun ex Milde, a name that was frequently used for northern North American plants, belongs to the southern phenotype.  相似文献   

18.
A homozygous recessive mutant of Arabidopsis thaliana has been selected which displays altered patterns of cellulose deposition. The mutant was selected because leaf and stem trichomes lacked the strong birefringence under polarized light which is characteristic of plant cells which contain highly ordered cellulose in their secondary cell walls. Compared with wild-type A. thaliana, this mutant (designated tbr for trichome birefringence) also displays reduced birefringence in the xylem of the leaf. Direct chemical analyses of root, stem, and leaf tissues, including isolated leaf trichomes, support the conclusion that tbr is impaired in its ability to deposit secondary wall cellulose in specific cell types, most notably in trichomes where the secondary wall appears to be totally absent. Altered patterns of wound-induced callose deposition in trichomes and surrounding cells is another trait which also co-segregates with the tbr mutation.  相似文献   

19.
Many plant species are miniaturized in the alpine region in Yakushima, Japan. To examine how these alpine dwarf plants are different from their related lowland ones of the same species, we analyzed two phylogenetically distinct species cytologically, genetically and morphologically: one is a fern species, Blechnum niponicum, and the other is an angiosperm species, Lysimachia japonica. The analysis shows that the alpine dwarf and the lowland plants in each of these species do not differ in chromosome number or genetic constitution. The organ-level comparison between the alpine dwarf and lowland plants of B. niponicum shows that the fertile leaf size correlates closely with the sterile one. By contrast, the flower size does not correlate with the leaf size in L. japonica. At the cell level, the leaf size of the alpine dwarf plants of B. niponicum consists of a smaller number of epidermal cells than that of the lowland plants of this species. On the other hand, the smaller leaf size of the alpine dwarf plants of L. japonica depends on both the smaller number and the smaller size of the epidermal cells. We conclude that plant dwarfism in Yakushima shows variation at both the organ and cell levels.  相似文献   

20.
A total of 660 individual plants ofMalva parviflora, a medicinal plant in many countries, growing in two bioclimatic regions were randomly collected with the aim of examining the differences in the allometry of this herbaceous plant growing in two bioclimatic regions. Allometric relationships were found in plant height, stem width, leaf area, leaf length, leaf width, petiole length, and leaf dry weight whereas no relationship was found between plant height or petiole length with specific leaf area. Plants growing in the cool bioclimatic region showed that plant height increases more than the increase in stem width, leaf length, leaf width, and petiole length while plants growing in the warm bioclimatic region showed that plant height increase was lower than that of stem width, leaf length, leaf width, and petiole length. Plant height relationship with root length indicated that in the cool region the plant height increase was less than the increase in the root length while the opposite occurred in the warm region. These differences can be explained by the effects of the different environmental conditions present in the two bioclimatic regions such as water scarcity and availability on the growth ofM. parviflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号