首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
W Harm 《Mutation research》1979,60(2):121-133
Yeast photoreactivating enzyme (PRE), preilluminated with wavelengths ranging from the near-UV to the red spectral region, forms with 254 nm-irradiated transforming DNA of Haemophilus influenzae enzyme-substrate complexes that are more efficiently photorepaired than complexes formed from non-preilluminated PRE. The action spectrum for this "preillumination effect", previously shown to have a maximum in the near-UV region, has another maximum near 577 nm. In complexes formed from non-preilluminated PRE the repair probability per incident photon is only about 25% of that in complexes formed from preilluminated PRE, if low-intensity photoreactivating light is applied continuously or as a sequence of flashes. However, photoreactivating light in the form of a single, high-intensity flash of 1 msec duration raises the repair probability to greater than 50%. Two light flashes, discharged with a delay of slightly more than a millisecond, may already achieve less photorepair than the same energy given as a single flash. These results are explained by the assumption that the great majority of PRE molecules in a non-preilluminated preparation have reduced activity (of the order of 1/4 of maximal activity). These less reactive molecules form enzyme-substrate complexes ("non-activated complexes") in which the repair probability per incident photon is considerably increased if 2 or more photons are absorbed within a time period of the order of milliseconds. This phenomenon, tentatively termed "2-photon photolysis" does not occur in "activated complexes" (i.e. those formed form preilluminated enzyme). The data are compatible with suggestion that the first absorption leads to a metastable excited state of the complex, during which the repair probability is increased by absorption of another photon. The generally observed heterogeneity of the photolytic response of enzyme-substrate complexes can be partly explained by heterogeneity of PRE molecules regarding their activity. In particular, uncontrolled exposure of enzyme to almost any kind of room light before its experimental use can enhance the heterogeneity.  相似文献   

6.
7.
8.
9.
10.
Structural studies of UV-induced lesions and their complexes with repair proteins reveal an intrinsic flexibility of DNA at lesion sites. Reduced DNA rigidity stems primarily from the loss of base stacking, which may manifest as bending, unwinding, base unstacking, or flipping out. The intrinsic flexibility at UV lesions allows efficient initial lesion recognition within a pool of millions to billions of normal DNA base pairs. To bypass the damaged site by translesion synthesis, the specialized DNA polymerase η acts like a molecular "splint" and reinforces B-form DNA by numerous protein-phosphate interactions. Photolyases and glycosylases that specifically repair UV lesions interact directly with UV lesions in bent DNA via surface complementation. UvrA and UvrB, which recognize a variety of lesions in the bacterial nucleotide excision repair pathway, appear to exploit hysteresis exhibited by DNA lesions and conduct an ATP-dependent stress test to distort and separate DNA strands. Similar stress tests are likely conducted in eukaryotic nucleotide excision repair.  相似文献   

11.
12.
Photoreactivating enzyme (PRE) from yeast (as semi-crude extract, or in highly purified form) shows increased activity if its is illuminated with near UV or short wavelength visible light prior to its use for photoenzymatic repair of UV-induced pyrimidine dimers in transforming DNA in vitro. This effect results from an alternation in PRE molecules changing those with low activity in the light-dependent step of the reaction to a higher activity. Light-induced activation of PRE preparations is slowly lost by dark storage for several hours to 1 day (faster at 23°C than at 5°C), but can be recovered repeatedly by renewed preillumination. The action spectrum for these preillumination effects generally resembles that for the photoenzymatic repair reaction itself, having its maximum in the same 355–385 nm region as the latter, but light of somewhat longer wavelengths (546 nm) is still effective. Preilluminated PRE is also more stable to thermal inactivation (65°C) than untreated enzyme.  相似文献   

13.
Dark repair of photorepairable UV lesions in Escherichia coli   总被引:6,自引:0,他引:6  
  相似文献   

14.
Replicative DNA polymerases generally cannot pass lesions in the template strand. Now there is accumulating evidence for the widespread existence of a separate class of DNA polymerases that can carry out translesion synthesis in both mutagenic and error-free ways.  相似文献   

15.
16.
17.
18.
Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25 degrees C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm(2) (=30 J/m(2)), the reduction reached the cell culture assay detection limit of approximately 3 log(10). At UV doses of 1.2 and 3 mJ/cm(2), the log(10) reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage.  相似文献   

19.
20.
Thoma F 《The EMBO journal》1999,18(23):6585-6598
Nucleotide excision repair (NER) and DNA repair by photolyase in the presence of light (photoreactivation) are the major pathways to remove UV-induced DNA lesions from the genome, thereby preventing mutagenesis and cell death. Photoreactivation was found in many prokaryotic and eukaryotic organisms, but not in mammals, while NER seems to be universally distributed. Since packaging of eukaryotic DNA in nucleosomes and higher order chromatin structures affects DNA structure and accessibility, damage formation and repair are coupled intimately to structural and dynamic properties of chromatin. Here, I review recent progress in the study of repair of chromatin and transcribed genes. Photoreactivation and NER are discussed as examples of how an individual enzyme and a complex repair pathway, respectively, access DNA lesions in chromatin and how these two repair processes fulfil complementary roles in removal of UV lesions. These repair pathways provide insight into the structural and dynamic properties of chromatin and suggest how other DNA repair processes could work in chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号