首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An autolysin gene, atlh, was identified and sequenced from Streptococcus downei MFe28 using degenerate polymerase chain reaction (PCR) and the gene-walking method. Atlh protein encoded by atlh is composed of 879 amino acids, with a molecular weight of 95,902.26. Atlh possesses four 15-amino-acid residue repeats in the putative cell-wall-binding domain and has a catalytic domain in the C-terminus. The deduced amino acid sequence of atlh showed homology to S. mutans autolysin AtlA (68.4% similarity). Inactivation of atlh resulted in elongated chain formation compared to the parent strain. Recombinant proteins Atlh and its derivatives were constructed and analyzed by zymography. Zymographic analysis revealed that the Asp-771 residue of Atlh was essential for lytic activity and that lytic activity was not diminished by the deletion of repetitive regions in the putative cell-wall-binding domain of Atlh. Biofilm assay showed that the wild-type strain formed glucose- and sucrose-dependent biofilms, the atlh mutant diminished this ability. These results suggest that Atlh is associated with cell separation and biofilm formation.  相似文献   

2.
Peptide permeases modulate transformation in Streptococcus pneumoniae   总被引:10,自引:1,他引:9  
To Identify elements participating In the process of transformation, a bank of genetically altered mutants of Streptococcus pneumoniae with defects in exported proteins was assessed for a decrease in transformation efficiency. One mutant consistentiy transformed 10-foid less than the parent strain. Sequence analysis and reconstitution of the altered locus revealed a gene, plpA (permease-like protein), which encodes a putative substrate-binding protein belonging to the family of bacterial permeases responsible for peptide transport. The derived amino acid sequence for this gene was 80% similar to AmiA, a peptide-binding protein homologue from pneumococcus, and 50% similar over 230 amino acids to SpooKA which is a regulatory element in the process of transformation and sporulation in Bacillus subtilis. PIpA fusions to alkaline phosphatase (PhoA) were shown to be membrane associated and labelled with [3H]-palmitic acid, which probably serves as a membrane anchor. Experiments designed to define the roles of the pIpA and ami determinants in the process of transformation showed that: (i) mutants with defects in plpA were >90% transformation deficient while ami mutants exhibited up to a fourfold increase in transformation efficiency; (ii) compared to the parental strain, the onset of competence in an ami mutant occurred earlier in logarithmic growth, whereas the onset was delayed in a plpA mutant; and (ill) the plpA mutation decreases the expression of a competence-regulated locus. Since the permease mutants would fail to bind specific ligands, it seems likely that the substrate-permease interaction modulates the process of transformation.  相似文献   

3.
Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.  相似文献   

4.
Escherichia coli was used as a model to study initial adhesion and early biofilm development to abiotic surface. Tn10 insertion mutants of Escherichia coli K-12 W3110 were selected for altered abilities to adhere to a polystyrene surface. Seven insertion mutants that showed a decrease in adhesion harbored insertions in genes involved in lipopolysaccharide (LPS) core biosynthesis. Two insertions were located in the rfaG gene, two in the rfaP gene, and three in the galU gene. These adhesion mutants were found to exhibit a deep-rough phenotype and to be reduced, at different levels, in type 1 fimbriae production and motility. The loss of adhesion exhibited by these mutants was associated with either the affected type 1 fimbriae production and/or the dysfunctional motility. Apart from the pleiotropic effect of the mutations affecting LPS on type 1 fimbriae and flagella biosynthesis, no evidence for an involvement of the LPS itself in adhesion to polystyrene surface could be observed. Received: 1 December 1998 / Accepted: 3 April 1999  相似文献   

5.
Ten strains from a collection of mutants ofSynechocystis 6803 defective in Photosystem II (PS II) function were transformed with chromosomal DNA of wild-type and mutant cells. Cross hybridization data allowed to identify four groups of PS II-mutants. Highly efficient transformation was observed between different mutant groups, but not within the groups. Restoration of photosynthetic activity of the mutant cells was also achieved by transformation with different parts of a 5.6 kbBam HI fragment of wild typeSynechocystis DNA containing thepsbB gene. Each group of mutants was transformed to photoautotrophic growth by specific subfragments of thepsbB gene. DNA fragments of four selected mutant strains hybridizing with thepsbB gene were isolated and sequenced. The mutations were identified as a single nucleotide insertion or substitution leading to stop codon formation in two of the mutants, as a deletion of 12 nucleotides, or as a nucleotide substitution resulting in an amino acid substitution in the other two mutants. Deletion of 12 nucleotides in mutant strain PMB1 and stop codon formation in strain NF16 affect membrane-spanning regions of the gene product, the CP 47 protein.  相似文献   

6.
Erythromycin-resistant and oleandomycin-resistant mutants ofStreptococcus challis 560 were obtained. As compared with the parent strains the mutants exhibited a lower transformability. This change of competence is reversible and may be reversed by adding the competence factor released by the parent strain into the supernatant fluid.  相似文献   

7.
Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.  相似文献   

8.
Physico-chemical surface characteristics and adhesive properties of a series of mutants of Streptococcus salivarius HB with defined cell surface structures were determined. Zeta potentials showed no relation either with the presence or absence of specific antigens on the bacterial cell surface, or with the adhesive properties of the cells. Hydrophobicity was assessed by surface free energy determination from measured contact angles, by adsorption to hexadecane and by hydrophobic interaction chromatography. Generally, the progressive removal of fibril subclasses from the cell surface resulted in a reduced hydrophobicity. However, specific fibrillar subclasses appeared to contribute to surface hydrophobicity to widely different extents. Bacterial adhesion to polymethylmethacrylate increased with increasing hydrophobicity of the mutants. However, adhesion to a more complex biological substratum, such as saliva-coated hydroxyapatite, correlated only partly with hydrophobicity. The organism, deprived of most of its fibrillar surface structures, clearly showed the least adhesion to hydrophobic ligands, to both polymethylmethacrylate and saliva-coated hydroxyapatite, and had a significantly higher surface free energy than the other mutants and the parent strain.  相似文献   

9.
Summary Yeast mutant strains which secrete large amounts of human lysozyme were screened using an agar medium containing bacterial cells. Nine mutants secreted over 10 times more lysozyme than the wild-type parent strain. The mRNA levels for lysozyme in the mutants were not higher than that of the wild-type strain. Three of the mutant strains were deficient in carboxypeptidase Y activity. It was found that the protease deficiency was caused by a deficiency in conversion of proenzyme to mature enzyme in ssl1 mutant cells. The ssl1 gene was found to be closely linked to the centromere and determine both the efficiency of secretion of lysozyme and the processing of carboxypeptidase Y.Abbreviations CPY carboxypeptidase Y (yscY) - HLY a synthetic gene for human lysozyme  相似文献   

10.
UDP-glucose (UDP-G), the direct precursor of cellulose, is known to be produced from UTP and glucose-1-phosphate. In an attempt to increase UTP biosynthesis, 5-fluorouridine (5-FUR: a pyrimidine analog)-resistant mutants were obtained using Acetobacter xylinum subsp. nonacetoxidans 757 as the parent strain. One of the 5-FUR-resistant mutants, FUR-35, showed about 40% higher cellulose productivion compared to the parent strain. Intracellular levels of UTP and UDP-G in FUR-35 was found to be higher than those in the parent strain. The carbamyl phosphate synthetase II (CPS) activity of FUR-35 was higher than that of the parent strain and the feedback inhibition of CPS by UTP in FUR-35 had been released compared with that in the parent strain. These results suggest that the increased cellulose production of FUR-35 was attributable to its higher of intracellular UDP-G level resulting from increased UTP biosynthesis.  相似文献   

11.
The highly conserved antigen I/II family of polypeptides produced by oral streptococci are believed to be colonization determinants and may mediate adhesion of bacterial cells to salivary glycoproteins adsorbed to cells and tissues in the human oral cavity. Streptococcus gordonii is shown to express, on the cell surface, two antigen I/II polypeptides designated SspA and SspB (formerly Ssp-5) that are the products of tandemly arranged chromosomal genes. The structure and arrangement of these genes is similar in two independently isolated strains, DL1 and M5, of S. gordonii. The mature polypeptide sequences of M5 SspA (1539 amino acid (aa) residues) and SspB (1462 aa residues) are almost wholly conserved (98% identical) in the C-terminal regions (from residues 796 in SspA and 719 in SspB, to the respective C-termini), well-conserved (84%) at the N-terminal regions (residues 1–429), and divergent (only 27% identical residues) within the intervening central regions. Insertional inactivation of the sspA gene in S. gordonii DL1 resulted in reduced binding of cells to salivary agglutinin glycoprotein (SAG), human erythrocytes, and to the oral bacterium Actinomyces naeslundii. Further reductions in streptococcal cell adhesion to SAG and to two strains of A. naeslundii were observed when both sspA and sspB genes were inactivated. The results suggest that both SspA and SspB polypeptides are involved in adhesion of S. gordonii cells to human and bacterial receptors.  相似文献   

12.
Microbial pathogens use adhesive surface proteins to bind to and interact with host tissues, events that are universal for the pathogenesis of infectious diseases. A surface adhesin of Bacillus anthracis, the causative agent of anthrax, required to mediate these steps has not been discovered. Previous work identified BslA, an S‐layer protein, to be necessary and sufficient for adhesion of the anthrax vaccine strain, Bacillus anthracis Sterne, to host cells. Here we asked whether encapsulated bacilli require BslA for anthrax pathogenesis in guinea pigs. Compared with the highly virulent parent strain B. anthracis Ames, bslA mutants displayed a dramatic increase in the lethal dose and in mean time‐to‐death. Whereas all tissues of animals infected with B. anthracis Ames contained high numbers of bacilli, only few vegetative forms could be recovered from internal organs of animals infected with the bslA mutant. Surface display of BslA occurred at the poles of encapsulated bacilli and enabled the binding of vegetative forms to host cells. Together these results suggest that BslA functions as the surface adhesin of the anthrax pathogen B. anthracis strain Ames.  相似文献   

13.
Pseudomonas tolaasii strain PT814 produces extracellular toxins, tolaasins, and a volatile toxin, tovsin, that are responsible for the induction of brown blotch and rotting, respectively, in a cultivated mushroom,Pleurotus ostreatus. Insertions of single transposon mini-Tn5Km 1 into the chromosome ofP. tolaasii strain PT814 generated mutants that are pleiotropically defective in tolaasin and protease production, and altered in colony morphology. The mutants, however, produce tovsin at the level of wild-type. Variants phenotypically similar to the pleiotropic mutants ofP. tolaasii strain PT814 spontaneously occurred inP. tolaasii strain S8501 at 22–30°C in vitro. The occurrence of variants was significantly reduced in the presence of extracts ofP ostreatus or at a temperature of 15–20°C. ThertpA gene (rtpA=regulator gene of tolaasin production and other pleiotropic traits) isolated from aP. tolaasii strain PT814 gene library restored the wild-type phenotype in both the mini-Tn5km 1 insertion and spontaneous mutants. mini-Tn5km 1 insertions were also located in the allele ofrtpA. Nucleotide sequencing of thertpA DNA revealed an open reading frame of 2,751 bp predicted to encode a protein consisting of 917 amino acid residues with a molecular mass of 100.6 kDa and displaying the conserved amino acid sequence of both sensor, and receiver domains of “bacterial two-component regulators”. The data suggest that the machinery responding to environmental stimuli is essential for the pathogenic interaction ofP. tolaasii with the mushroom.  相似文献   

14.
The gene encoding l-lactate dehydrogenase (LDH) was cloned from an industrial dairy strain of Streptococcus thermophilus M-192 using a synthetic oligonucleotide probe based on the N-terminal amino acid sequence of the purified enzyme, and its nucleotide sequence was determined. The enzyme was deduced to have 328 amino acid residues with a molecular weight of 35,428 and found to have high sequence similarity to LDHs from other lactic acid bacteria (89.0% to Streptococcus mutans, 76.3% to Lactococcus lactis subsp. lactis, 67% to Lactobacillus casei, and 60% to Lactobacillus plantarum). The gene contained a promoter-like sequence similar to the Escherichia coli promoter consensus, and expression of the S. thermophilus LDH gene was observed in E. coli cells.  相似文献   

15.
Two extracellular polysaccharide mutants of Streptococcus mutans GS-5 were obtained and examined. The mutants were distinguished by colonial morphology and by growth on and adherence to hard surfaces. A technique was devised which allowed these bacteria to be studied as they appeared when grown on a hard surface in liquid medium which contained sucrose. Negative stains, replicas, and scanning electron micrography clearly revealed differences in cellular aggregation due to the various extracellular polysaccharides produced. Comparison of sections of the adherent parent strain (GS-5) with those of the nonadherent mutant (GS-511) allowed the extracellular polysaccharide(s) responsible for adhesion to be visually localized.  相似文献   

16.
Summary A novel and efficient genetic procedure is described for generating mitochondrial mutants of the green alga Chlamydomonas reinhardtii. The development of a mutagenesis procedure using manganese cations and the application of cytoduction techniques resulted in a combined approach for the generation and analysis of mitochondrial mutants. Although mitochondrial mutations are inherited in sexual crosses from the minus mating type parent, the cytoduction technique can be used to transfer mitochondrial mutations into recipient strains with different genetic backgrounds, irrespective of their mating type. Cytoduction allows the transfer of mitochondrial markers from diploid to haploid cells also, which is of great benefit since diploid cells do not germinate in C. reinhardtii. We report here the isolation and characterisation of eight mutants, which are resistant to the antibiotics myxothiazol and mucidin. The mutants all have point mutations in the mitochondrial gene for apocytochrome b. Using in vitro-amplified cytb gene fragments as probes for direct DNA sequencing, three different types of single base pair substitutions were revealed in all mutants tested. In particular, amino acid substitutions in the mutant apocytochrome b polypeptide have been identified at residues 129, 132 and 137, which have been implicated in forming part of an antibiotic-binding niche. The amino acid substitution at position 132 has not been so far described for mutant apocytochrome b in any other organism, prokaryotic or eukaryotic. The genetic approach presented here confirms C. reinhardtii as a model system that is unique among plant cells.  相似文献   

17.
Streptococcus mutans produces glucan-binding proteins (Gbps), which appear to contribute to the virulence of S. mutans. GbpA and GbpC genes were inactivated by the insertion of antibiotic-resistant genes into each gbp gene of S. mutans MT8148 to generate Gbp-defective mutants. Sucrose dependent adherences of the GbpA- and GbpC-defective mutants were found to be significantly lower than those of their parent strains MT8148. Caries inducing activity of the mutants in rats was significantly lower than that of strain MT8148R (streptomycin-resistant strain of MT8148). These results suggest that GbpA and GbpC participate in cellular adherence to tooth surfaces and contribute to the cariogenicity of S. mutans.  相似文献   

18.
Acetate is present in lignocellulosic hydrolysates at growth inhibiting concentrations. Industrial processes based on such feedstock require strains that are tolerant of this and other inhibitors present. We investigated the effect of acetate on Saccharomyces cerevisiae and show that elevated acetate concentrations result in a decreased specific growth rate, an accumulation of cells in the G1 phase of the cell cycle, and an increased cell size. With the cytostat cultivation technology under previously derived optimal operating conditions, several acetate resistant mutants were enriched and isolated in the shortest possible time. In each case, the isolation time was less than 5 days. The independently isolated mutant strains have increased specific growth rates under conditions of high acetate concentrations, high ethanol concentrations, and high temperature. In the presence of high acetate concentrations, the isolated mutants produce ethanol at higher rates and titers than the parental strain and a commercial ethanol producing strain that has been analyzed for comparison. Whole genome microarray analysis revealed gene amplifications in each mutant. In one case, the LPP1 gene, coding for lipid phosphate phosphatase, was amplified. Two mutants contained amplified ENA1, ENA2, and ENA5 genes, which code for P‐type ATPase sodium pumps. LPP1 was overexpressed on a plasmid, and the growth data at elevated acetate concentrations suggest that LPP1 likely contributes to the phenotype of acetate tolerance. A diploid cross of the two mutants with the amplified ENA genes grew faster than either individual haploid parent strain when 20 g/L acetate was supplemented to the medium, which suggests that these genes contribute to acetate tolerance in a gene dosage dependent manner. Biotechnol. Bioeng. 2009;103: 500–512. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Since some amino acids, polyols and sugars in cells are thought to be osmoprotectants, we expected that several amino acids might also contribute to enhancing freeze tolerance in yeast cells. In fact, proline and charged amino acids such as glutamate, arginine and lysine showed a marked cryoprotective activity nearly equivalent to that of glycerol or trehalose, both known as major cryoprotectants for Saccharomyces cerevisiae. To investigate the cryoprotective effect of proline on the freezing stress of yeast, we isolated proline-analogue-resistant mutants derived from a proline-non-utilizing strain of S. cerevisiae. When cultured in liquid minimal medium, many mutants showed a prominent increase, two- to approximately tenfold, in cell viability compared to the parent after freezing in the medium at −20 °C for 1 week. Some of the freeze-tolerant mutants were found to accumulate a higher amount of proline, as well as of glutamate and arginine which are involved in proline metabolism. It was also observed that proline-non-utilizer and the freeze-tolerant mutants were able to grow against osmotic stress. These results suggest that the increased flux in the meta-bolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts. Received: 6 November 1996 / Accepted: 7 December 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号