共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Effect of chemical modifications of tryptophan residues on the folding of reduced hen egg-white lysozyme 总被引:1,自引:0,他引:1
The effects of chemical modifications of Trp62 and Trp108 on the folding of hen egg-white lysozyme from the reduced form were investigated by means of the sulfhydryl-disulfide interchange reaction at pH 8 and 40 degrees C. The folding of reduced lysozyme was monitored by following the recovery of the original activity. Under the conditions employed, the apparent first-order rate constant for the folding of reduced lysozyme was not changed by the modifications of both Trp62 and Trp108 and the folding was completed within 30 min. However, the extent of the correct folding was changed by the modification of Trp62 but not by that of Trp108. Native and oxindolealanine108 lysozymes recovered 80 and 81% of their original activities after 30-min refolding, respectively, but Trp62-modified lysozymes recovered their activities to a lesser extent than native and oxindolealanine108 lysozymes. The recovered activities of Trp62-modified lysozymes after 30-min refolding were 63% for oxindolealanine62 lysozyme, 65% for delta 1-carboxamidomethylthiotryptophan62 lysozyme, and 52% for delta 1-carboxymethylthiotryptophan62 lysozyme. These results suggest that Trp62 is important for preventing the misfolding of reduced lysozyme, but that neither Trp62 nor Trp108 is involved in the rate-determining step (the slowest step) in the folding pathway. A decrease in the hydrophobic nature of Trp62 seems to increase the misfolding and thus to decrease the extent of the correct folding of reduced lysozyme. A mechanism for the involvement of Trp62 in the folding pathway of reduced lysozyme is proposed. 相似文献
4.
The disulfide bridges of hen's egg-white lysozyme 总被引:1,自引:0,他引:1
5.
6.
7.
8.
9.
10.
11.
12.
Long range electron transfer between tyrosine and tryptophan in hen egg-white lysozyme 总被引:1,自引:0,他引:1
M Weinstein Z B Alfassi M R DeFelippis M H Klapper M Faraggi 《Biochimica et biophysica acta》1991,1076(2):173-178
The azide, dibromide and dichloride radicals oxidize one or more tryptophan side chains in hen egg-white lysozyme. The indolyl radical produced in this second-order 1-electron oxidation subsequently oxidizes a tyrosine side chain to the phenoxy radical in an intramolecular reaction with a rate constant of 130 +/- 10 s-1 at pH 7, 25 degrees C. The final indolyl and phenoxy equilibrium mixture then decays with a t1/2 approximately 2 s. The faster intramolecular reaction exhibits a pH dependence; on decreasing the pH from 9 the first-order rate constant increases to a maximum near pH 5.4 and then declines as the pH is lowered further. In contrast, the first-order rate constant for the intramolecular electron transfer between the tyrosine and tryptophan of the peptide trpH-pro-tyrOH remains unchanged between approx. pH 11 and 6.5 and then increases as the pH is lowered further. This difference in the observed pH dependence suggests that changes in structure or ionization state influence the protein electron transfer rate. We also discuss the radiation inactivation of lysozyme in light of these observations. 相似文献
13.
14.
At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several degenerative diseases. Despite extensive investigation on amyloid fibrillogenesis, its detailed molecular mechanisms remain unknown. This study is aimed at exploring the inhibitory activity of curcumin against the fibrillation of hen lysozyme. We found that the formation of amyloid fibrils at pH 2.0 in vitro was inhibited by curcumin in a dose-dependent manner. Moreover, quenching analysis confirmed the existence of an interaction between curcumin and lysozyme, and Van't Hoff analysis indicated that the curcumin–lysozyme interaction is predominantly governed by Van Der Waals force or hydrogen bonding. Curcumin was also found to acquire disaggregating ability on preformed lysozyme fibrils. Finally, we observed that curcumin pre-incubated at 25 °C for at least 7 days inhibited lysozyme fibrillogenesis better than untreated curcumin and the enhanced inhibition against HEWL fibrillation might be attributed to the presence of dimeric species. 相似文献
15.
16.
17.
18.
19.
Maroufi B Ranjbar B Khajeh K Naderi-Manesh H Yaghoubi H 《Biochimica et biophysica acta》2008,1784(7-8):1043-1049
A facile method for the formation of covalent bonds between protein molecules is zero length cross-linking. This method enables the formation of cross-links without use of any chemical reagents. Here, we report a cross-linking method for lysozyme and some structural studies as well as catalytic activity assay was performed on lysozyme dimer. The results showed that catalytic activity of lysozyme dimer was the same as monomer. Also, the GdnCl-induced equilibrium unfolding of hen egg-white lysozyme monomer and dimer at pH 2 was studied over a temperature range of 290.7-303.2 K by means of CD spectroscopy. The lack of coincidence between two unfolding curves at 222 and 289 nm in lysozyme dimer was observed, which suggested the existence of intermediate state in unfolding process, while lysozyme monomer showed a single cooperative transition. Thus, the thermodynamic parameters were estimated on the basis of two-state mechanism for lysozyme monomer and three-state one for lysozyme dimer. These results indicated that zero length cross-linking can stabilize the intermediate, so the population of intermediate increased. Our results offer a special opportunity to study the role of intermediates in protein folding mechanisms. In addition thermal unfolding of monomer and dimer in 222 nm was achieved. 相似文献
20.
The mass density of protein crystals can be measured in Ficoll gradients as a function of hydrostatic pressure. Carbon tetrachloride-toluene mixtures provide convenient density markers, and the compressibility of these standards is reported. Measurements on tetragonal crystals of hen egg-white lysozyme yielded densities at room temperature of 1.2367(+/- 0.0010) g cm-3 at 1 atm and 1.2586(+/- 0.0017) g cm-3 at 1000 atm (1 atm = 101,325 Pa). When combined with the unit cell dimensions at these two pressures these values lead to an estimated compression (fractional change in volume) of the crystal solvent at 1000 atm of 0.0369(+/- 0.0054). This value is comparable to that of a 0.7 M solution of NaCl. From an approximate estimate of the Donnan effect for the crystal in the 1.4 M-NaCl mother liquor, the crystal solvent contains 0.8 M-Na+ and 2.5 M-Cl-. It is concluded that the compressibility of solvent in lysozyme crystals is, within experimental error, the same as bulk solvent and does not exhibit the dramatically altered compressibility expected of an ice or glass-like solid. The crystallographically observable water sites, 151 at 1 atm and 163 at 1000 atm, showed a tendency to increase the number of hydrogen bonds made to other water sites at the expense of hydrogen bonds made to protein. The explanation for this phenomenon is presently unknown. Water sites that occur in both structures tend to have comparable temperature factors and show some tendency to follow the pressure-induced changes in protein atom positions. The compression expected for the water molecules themselves is too small to be observable at the resolution of the X-ray data collected in this study. 相似文献