首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galactan: galactan galactosyltransferase (GGT), an enzyme involved in the biosynthesis of the long-chain raffinose family of oligosaccharides (RFOs) in Ajuga reptans, catalyses the transfer of an alpha-galactosyl residue from one molecule of RFO to another one resulting in the next higher RFO oligomer. This novel galactinol (alpha-galactosyl-myo-inositol)-independent alpha-galactosyltransferase is responsible for the accumulation of long-chain RFOs in vivo. Warm treatment (20 degrees C) of excised leaves resulted in a 34-fold increase of RFO concentration and a 200-fold increase of GGT activity after 28 days. Cold treatment (10 degrees C/3 degrees C day/night) resulted in a 26- and 130-fold increase, respectively. These data support the role of GGT as a key enzyme in the synthesis and accumulation of long-chain RFOs. GGT was purified from leaves in a 4-step procedure which involved fractionated precipitation with ammonium sulphate as well as lectin affinity, anion exchange, and size-exclusion chromatography and resulted in a 200-fold purification. Purified GGT had an isoelectric point of 4.7, a pH optimum around 5, and its transferase reaction displayed saturable concentration dependence for both raffinose (Km = 42 mM) and stachyose (Km = 58 mM). GGT is a glycoprotein with a 10% glycan portion. The native molecular mass was 212 kDa as determined by size-exclusion chromatography. Purified GGT showed one single active band after native PAGE or IEF separation, respectively, which separated into three bands on SDS-PAGE at 48 kDa, 66 kDa, and 60 kDa. The amino acid sequence of four tryptic peptides obtained from the major 48-kDa band showed a high homology to plant alpha-galactosidase (EC 3.2.1.22) sequences. GGT differed, however, in its substrate specificity from alpha-galactosidases; it neither hydrolysed nor transferred alpha-galactosyl-groups from melibiose, galactinol, UDP-galactose, manninotriose, and manninotetrose. Galactinol, sucrose, and galactose inhibited the GGT reaction considerably at 10-50 mM.  相似文献   

2.
Abiotic stresses resulting from water deficit, high salinity or periods of drought adversely affect plant growth and development and represent major selective forces during plant evolution. The raffinose family oligosaccharides (RFOs) are synthesised from sucrose by the subsequent addition of activated galactinol moieties donated by galactinol. RFOs are characterised as compatible solutes involved in stress tolerance defence mechanisms, although evidence also suggests that they act as antioxidants, are part of carbon partitioning strategies and may serve as signals in response to stress. The key enzyme and regulatory point in RFO biosynthesis is galactinol synthase (GolS), and an increase of GolS in expression and activity is often associated with abiotic stress. It has also been shown that different GolS isoforms are expressed in response to different types of abiotic stress, suggesting that the timing and accumulation of RFOs are controlled for each abiotic stress. However, the accumulation of RFOs in response to stress is not universal and other functional roles have been suggested for RFOs, such as being part of a carbon storage mechanism. Transgenic Arabidopsis plants with increased galactinol and raffinose concentrations had better ROS scavenging capacity, while many sugars have been shown in vitro to have antioxidant activity, suggesting that RFOs may also act as antioxidants. The RFO pathway also interacts with other carbohydrate pathways, such as that of O‐methyl inositol (OMI), which shows that the functional relevance of RFOs must not be seen in isolation to overall carbon re‐allocation during stress responses.  相似文献   

3.
The Ajuga reptans L. galactan:galactan galactosyltransferase (ArGGT) is a vacuolar enzyme that synthesizes long-chain raffinose family oligosaccharides (RFOs), the major storage carbohydrates of this plant. ArGGT is structurally and functionally related to acid plant alpha-galactosidases (alpha-Gals) of the glycosylhydrolase family 27, present in the apoplast or the vacuole. Sequence comparison of acid alpha-Gals with ArGGT revealed that they all contain an N-terminal signal sequence and a highly similar core sequence. Additionally, ArGGT and some acid alpha-Gals contain C-terminal extensions with low sequence similarities to each other. Here, we show that the C-terminal pentapeptide, SLQMS, is a non-sequence-specific vacuolar sorting determinant. Analogously, we demonstrate that the C-terminal extensions of selected acid alpha-Gals from Arabidopsis, barley, and rice, are also non-sequence-specific vacuolar sorting determinants, suggesting the presence of at least one vacuolar form of acid alpha-Gal in every plant species.  相似文献   

4.
Detached chickpea inflorescences bearing pods at 20 days after flowering (DAF) were cultured for 5 days in complete liquid medium supplemented separately with asparate, myo-inositol, alpha-ketoglutarate and phytic acid. Effect of these metabolites on sugar interconvestion and starch and protein accumulation in developing pods was studied. Substituting asparate (62.5 mM) for glutamine in culture medium decreased relative proportion of sucrose in all pod tissues but increased the level of sugars, starch and protein in pod wall and cotyledons. In cotyledons, whereas myo-inositol (75 mM) reduced the accumulation of starch without affecting protein level, alpha-ketoglutarate (44 mM) increased both starch and protein accumulation. Both myo-inositol and alpha-ketoglutarate increased relative proportion of sucrose in cotyledons. Phytic acid (1 mM) decreased in cotyledons 14C incorporation from glucose into EtOH extract (principally constituted by sugars), amino acids and proteins but increased the same into starch. In cotyledons, phytic acid also increased 14C incorporation from glutamate into amino acids but this increase was negatively correlated with protein synthesis. Phytic acid decreased the relative distribution of 14C from glucose and glutamate into sucrose from pod wall but enhanced the same into EtOH extract from embryo. Based on the results, it is suggested that mode of metabolic response to exogenously supplied metabolites widely differs in pod tissues of chickpea.  相似文献   

5.
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low‐starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock.  相似文献   

6.
The purpose of this study was to analyse the accumulation of amino acid in source and sink tissues of variegated Coleus blumei Benth. leaves during an extended exposure to salinity stress. The imposed stress resulted in a reduction in shoot height and leaf size, as well as a reduction in total protein and nitrogen content in both the sink and source tissues. At the same time, accumulation of low molecular weight nitrogen-containing compounds in Coleus leaves was observed, which peaked within the first 10 d of exposure to salinity, and then declined, but remained slightly elevated for the remainder of the study. A number of amino acids were found to accumulate in both the sink and source tissues, including arginine, asparagine, and serine. A larger proportion of asparagine and less arginine was observed in the sink tissue than the source tissue of the salinity-stressed plants. This difference may reflect the mobility of these compounds in the phloem. No proline was found to accumulate in either the source or sink tissue during the exposure to salinity. From the pulse-chase labelling of stressed Coleus leaves it can deduced that some of the observed accumulation of amino acids and amides observed is due to de novo synthesis and not simply the result of protein degradation.  相似文献   

7.
Salinity is one of the major environmental factors affecting plant growth and survival by modifying source and sink relationships at physiological and metabolic levels. Individual metabolite levels and/or ratios in sink and source tissues may reflect the complex interplay of metabolic activities in sink and source tissues at the whole‐plant level. We used a non‐targeted gas chromatography–mass spectrometry (GC‐MS) approach to study sink and source tissue‐specific metabolite levels and ratios from bermudagrass under salinity stress. Shoot growth rate decreased while root growth rate increased which lead to an increased root/shoot growth rate ratio under salt stress. A clear shift in soluble sugars (sucrose, glucose and fructose) and metabolites linked to nitrogen metabolism (glutamate, aspartate and asparagine) in favor of sink roots was observed, when compared with sink and source leaves. The higher shifts in soluble sugars and metabolites linked to nitrogen metabolism in favor of sink roots may contribute to the root sink strength maintenance that facilitated the recovery of the functional equilibrium between shoot and root, allowing the roots to increase competitive ability for below‐ground resource capture. This trait could be considered in breeding programs for increasing salt tolerance, which would help maintain root functioning (i.e. water and nutrient absorption, Na+ exclusion) and adaptation to stress.  相似文献   

8.
Raffinose family oligosaccharides (RFOs) fulfil multiple functions in plants. In seeds, they possibly protect cellular structures during desiccation and constitute carbon reserves for early germination. Their biosynthesis proceeds by the transfer of galactose units from galactinol to sucrose. Galactinol synthase (GolS), which mediates the synthesis of galactinol from myo-inositol and UDP-galactose, has been proposed to be the key enzyme of the pathway. However, no significant relationship was detected between the extractable GolS activity and the amount of RFOs in seeds from seven pea (Pisum sativum L.) genotypes selected for high variation in RFO content. Instead, a highly significant correlation was found between the levels of myo-inositol and RFOs. Moderately strong relationships were also found between sucrose and RFO content as well as between myo-inositol and galactinol. Further evidence for a key role of myo-inositol for the synthesis of galactinol was obtained by feeding exogenous myo-inositol to intact pea seeds and by the analysis of four barley (Hordeum vulgare L.) low phytic acid mutants. In seeds of three of these mutants, the reduced demand for myo-inositol for the synthesis of phytic acid (myo-inositol 1,2,3,4,5,6-hexakisphosphate) was associated with an increased level in myo-inositol. The mutants seeds also contained more galactinol than wild-type seeds. The results suggest that the extent of RFO accumulation is controlled by the levels of the initial substrates, myo-inositol and sucrose, rather than by GolS activity alone.  相似文献   

9.
10.
11.
Raffinose family oligosaccharides (RFOs) are important phloem transport and storage carbohydrates for many plants. Ajuga reptans, a frost-hardy evergreen labiate, ideally combines these two physiological roles and served as our model plant to study the regulation and importance of RFO metabolism. Galactinol is the galactosyl donor for the synthesis of raffinose (RFO-trisaccharide) and stachyose (RFO-tetrasaccharide), and its synthesis by galactinol synthase (GolS) is the first committed step of the RFO biosynthetic pathway. Two cDNAs encoding two distinct GolS were isolated from A. reptans source and sink leaves, designated GolS-1 and GolS-2, respectively. Warm- and cold-grown sink and source leaves were compared, revealing both isoforms to be cold-inducible and GolS-1 to be source leaf-specific; GolS-1 expression correlated positively with GolS activity. Conversely, GolS-2 expression was comparatively much lower and its contribution to the total extractable GolS activity is most probably only minor. These observations, together with results from phloem exudation and leaf shading experiments suggest that GolS-1 is mainly involved in the synthesis of storage RFOs and GolS-2 in the synthesis of transport RFOs. Furthermore, in situ hybridization studies showed GolS-1 to be primarily expressed in the mesophyll, the site of RFO storage, and GolS-2 in the phloem-associated intermediary cells known for their role in RFO phloem loading. A model depicting the spatial compartmentation of the two GolS isoforms is proposed.  相似文献   

12.
In Arabidopsis, genes encoding functional enzymes for the synthesis and degradation of trehalose have been detected recently. In this study we analyzed how trehalose affects the metabolism and development of Arabidopsis seedlings. Exogenously applied trehalose (25 mM) strongly reduced the elongation of the roots and, concomitantly, induced a strong accumulation of starch in the shoots, whereas the contents of soluble sugars were not increased. When Arabidopsis seedlings were grown on trehalose plus sucrose (Suc), root elongation was restored, but starch still accumulated to a much larger extent than during growth on Suc alone. The accumulation of starch in the shoots of trehalose-treated seedlings was accompanied by an increased activity of ADP-glucose pyrophosphorylase and an induction of the expression of the ADP-glucose pyrophosphorylase gene, ApL3. Even in the presence of 50 mM Suc, which itself also slightly induced ApL3, trehalose (5 mM) led to a further increase in ApL3 expression. These results suggest that trehalose interferes with carbon allocation to the sink tissues by inducing starch synthesis in the source tissues. Furthermore, trehalose induced the expression of the beta-amylase gene, AT-beta-Amy, in combination with Suc but not when trehalose was supplied alone, indicating that trehalose can modulate sugar-mediated gene expression.  相似文献   

13.
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source–sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.  相似文献   

14.
15.
Improvement in salinity tolerance of plants is of immense significance as salt stress particularly threatens the productivity of agricultural crops. This study was designed to assess the tolerance level of six Brassica napus varieties (Super, Sandal, Faisal, CON-111, AC Excel and Punjab) under different levels of salinity (0, 50, 100, 150 & 200 mM) with three replications under CRD. Salt induced osmotic stress curtailed the plant growth attributes, photosynthetic pigments and disturbed ionic homeostasis (K+, Na+, Ca2+, Cl-) but least disturbance as compared to control was found in Super and Sandal cultivars. Punjab canola and AC Excel canola cultivars were least tolerant to salinity because these displayed greater decline in all growth and biochemical attributes. Plants subjected to NaCl induced stress exhibited considerable decline in all attributes under study with proline as exception. Antioxidants (CAT, SOD & POD) showed an obvious change in Canola plants under stress, but greatest decline was displayed at 200 mM NaCl level in all six cultivars. Over all these attributes presented a comparatively stable trend in super and sandal cultivars. This shows presence of physiological resilience and metabolic capacity in these two cultivars to tackle salinity. Similarly, all yield attributes displayed adverse behavior under 150 mM & 200 mM salinity stress. Our results demonstrated that Super and Sandal cultivars of Brassica napus exhibit good performance in salinity tolerance and can be good option for cultivation in salt affected areas.  相似文献   

16.
Changes in the chloroplast ultrastructure and starch and lipid content in the mesophyll and phloem companion cells of the phloem were studied after induction of source and sink functions in leaf tissues. A detached sugar-beet leaf, one half of which was treated with water (source part) and the other half of which was treated with 10–4 M benzyladenine (BA) (acceptor part), was used as a model. After 65-h exposure to diffuse light, starch disappeared and lipid content increased in the source part of the leaf, with simultaneous disorganization of the chloroplast structure, which was most pronounced in the companion cells. Changeover from the source to sink function, induced by BA treatment, did not lead to marked destructive changes in the chloroplast structure of companion cells and resulted in the appearance of starch and in further increase in the level of lipids. Smaller amounts of starch also appeared in the mesophyll chloroplasts in the sink part of the leaf. We suppose that: (1) BA promotes the storage of assimilates, which are imported from the source part of the leaf to the companion cells, in the form of starch and lipids within chloroplasts; and this storage contributes to the maintenance of the sucrose concentration gradient in the conducting system between donor and sink parts of the leaf and, thus, activates metabolite inflow and (2) a barrier exists in the sink part of the leaf for assimilates destined to mesophyll cells, which restricts their export from the phloem.  相似文献   

17.
Particulate membrane preparations from etiolated pea epicotyls were found to contain fucosyltransferases, which transferred fucose from GDP-fucose onto xyloglucan and N-linked glycoprotein, and galactosyltransferases, which transferred galactose from UDP-galactose onto galactan, xyloglucan, and N-linked glycoprotein. The products were characterised by specific enzyme degradation and by acid and alkaline hydrolysis. All the enzymes were found to be concentrated in the Golgi apparatus. The Golgi apparatus was further fractionated into membranes of low, medium and high-density. The glycoprotein fucosyltransferase activity was present in highest amounts in the medium-density Golgi membranes, while the majority of the xyloglucan fucosyltransferase was present in the low-density Golgi membranes. The majority of the galactan galactosyltransferase (galactan synthase) was found in the low-density membranes, while the glycoprotein galactosyltransferase was equally distributed in all three subfractions.  相似文献   

18.
Variegated coleus (Coleus blumei Benth.) plants were exposed to a restricted water supply for 21 d. The relative water content in leaf tissues was reduced from 80% (control) to 60% (drought-stressed). Under drought conditions, the stomatal conductance and leaf photosynthetic rate were reduced. In green leaf tissues, drought stress also greatly decreased the diurnal light-period levels of the raffinose family oligosaccharides (RFOs) stachyose and raffinose, as well as those of other non-structural carbohydrates (galactinol, sucrose, hexoses, and starch). However, drought had little effect on soluble carbohydrate content of white, non-photosynthetic leaf tissues. In green tissues, galactinol synthase activity was depressed by drought stress. An accumulation of O-methyl-inositol was also observed, which is consistent with the induction of myoinositol-6-O-methyltransferase activity seen in the stressed green tissues. In source tissues, RFO metabolism is apparently reduced by drought stress through a combined effect of decreased photosynthesis and reduced galactinol synthase activity. Moreover, a further reduction in RFO biosynthesis may have been due to a switch in carbon partitioning to O-methyl-inositol biosynthesis, creating competition for myoinositol, a metabolite shared by both biochemical pathways.  相似文献   

19.
基于植株碳流的水稻籽粒淀粉积累模拟模型   总被引:1,自引:0,他引:1       下载免费PDF全文
通过解析水稻(Oryza sativa)植株碳素积累和转运的动态规律及其与环境因子和基因型之间的定量关系, 构建基于植株碳流动态的水稻籽粒淀粉积累模拟模型。水稻籽粒中的淀粉积累速率取决于库限制下的淀粉积累速率和源限制下的可获取碳源。库限制下的淀粉积累速率是潜在淀粉积累速率及温度、水分、氮素、淀粉合成能力等因子综合影响的结果; 源限制下的可获取碳源取决于花后光合器官生产的即时光合产物和营养器官向籽粒转运的储存光合产物。花后植株即时光合产物随花后生长度日呈对数递减。花后营养器官向籽粒转运的储存光合产物又分为叶片和茎中积累碳素的转运。利用不同栽培条件下的独立田间试验资料对籽粒淀粉积累的动态模型进行了检验, 结果显示籽粒淀粉积累量和含量的模拟值和观测值之间的根均方差均值分别为3.61%和4.51%, 决定系数分别为0.994和0.959, 表明该模型对不同栽培条件下的水稻单籽粒淀粉积累量和含量具有较好的预测性, 为水稻生产中籽粒淀粉指标的动态预测和管理调控提供了量化工具。  相似文献   

20.
Metabolic responses are important for plant adaptation to osmotic stresses. To understand the dosage and duration dependence of salinity effects on plant metabolisms, we analyzed the metabonome of tobacco plants and its dynamic responses to salt treatments using NMR spectroscopy in combination with multivariate data analysis. Our results showed that the tobacco metabonome was dominated by 40 metabolites including organic acids/bases, amino acids, carbohydrates and choline, pyrimidine, and purine metabolites. A dynamic trajectory was clearly observable for the tobacco metabonomic responses to the dosage of salinity. Short-term low-dose salt stress (50 mM NaCl, 1 day) caused metabolic shifts toward gluconeogenesis with depletion of pyrimidine and purine metabolites. Prolonged salinity with high-dose salt (500 mM NaCl) induced progressive accumulation of osmolytes, such as proline and myo-inositol, and changes in GABA shunt. Such treatments also promoted the shikimate-mediated secondary metabolisms with enhanced biosynthesis of aromatic amino acids. Therefore, salinity caused systems alterations in widespread metabolic networks involving transamination, TCA cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms, and the metabolisms of choline, pyrimidine, and purine. These findings provided new insights for the tobacco metabolic adaptation to salinity and demonstrated the NMR-based metabonomics as a powerful approach for understanding the osmotic effects on plant biochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号