首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

2.
Two types of hydrocarbon chain interdigitation in sphingomyelin bilayers   总被引:4,自引:0,他引:4  
Vibrational Raman spectroscopic experiments have been performed as a function of temperature on aqueous dispersions of synthetic DL-erythro-N-lignoceroylsphingosylphosphocholine [C(24):SPM], a racemic mixture of two highly asymmetric hydrocarbon chain length sphingomyelins. Raman spectral peak-height intensity ratios of vibrational transitions in the C-H stretching-mode region show that the C(24):SPM-H2O system undergoes two thermal phase transitions centered at 48.5 and 54.5 degrees C. Vibrational data for fully hydrated C(24):SPM are compared to those of highly asymmetric phosphatidylcholine dispersions. The Raman data are consistent with the plausible model that the lower temperature transition can be ascribed to the conversion of a mixed interdigitated gel state (gel II) to a partially interdigitated gel state (gel I) and that the higher temperature transition corresponds to a gel I----liquid-crystalline phase transition. The observation of a mixed interdigitated gel state (gel II) at temperatures below 48.5 degrees C implies that biological membranes may have lipid domains in which some of the lipid hydrocarbon chains penetrate completely across the entire hydrocarbon width of the lipid bilayer.  相似文献   

3.
13C-NMR spectra have been obtained at 50.3 MHz for monoarachidoylphosphatidylcholine (MAPC) and dipalmitoylphosphatidylcholine (DPPC) dispersions from 25 degrees C to 55 degrees C and for DPPC polycrystals at 25 degrees C using the cross polarization/magic angle spinning technique. Differential scanning calorimetric studies on DPPC and MAPC dispersions show comparable lipid phase transitions with transition temperatures at 41 degrees C and 45 degrees C, respectively, and thus enable the comparison of thermal, structural and dynamic differences between these two systems at corresponding temperatures. Conformational-dependent 13C chemical shift studies on DPPC dispersions demonstrate not only the coexistence of the tilted gel (L beta') and liquid-crystalline (L alpha) phases in the rippled gel (P beta') phase, but also the presence of an intermediate third microscopic phase as evidenced by three resolvable peaks for omega - 1 methylene carbon signals at the temperature interval between Tp and Tm. By comparing chemical shifts of MAPC in the hydrocarbon chain region with those of DPPC at similar reduced temperatures, it can be concluded that the packings are perturbed markedly in the middle segment of the fatty acyl chain during the lamellar to micellar transition. However, terminal methylene and methyl groups of interdigitated MAPC lamellae were found to be more ordered than those of non-interdigitated DPPC bilayers in the gel state. Interestingly, the terminal methyl groups of MAPC in the micelles remain to be relatively ordered; in fact, they are more ordered than the corresponding acyl chain end of DPPC in the liquid-crystalline state. Analysis of data obtained from rotating frame proton spin-lattice relaxation measurements shows a highly mobile phosphocholine headgroup, a rigid carbonyl group and an ordered hydrocarbon chain for lamellar MAPC in the interdigitated state. Furthermore, results suggest that free rotations of the glycerol C2-C3 bond within MAPC molecules may occur in the interdigitated bilayer, whereas intramolecular exchange between two conformations of the glycerol backbone in DPPC become possible at temperatures close to the pretransition temperature. Without isotope enrichment, we conclude that high-resolution solid-state 13C-NMR is indeed a useful technique which can be employed to study the packing and dynamics of phospholipids.  相似文献   

4.
Thermotropic transitions of dihexadecylphosphatidylcholine (DHPC) dispersions in hydrogen oxide (1H2O) and deuterium oxide (2H2O) were investigated by differential scanning calorimetry (DSC). In DHPC dispersions, transition temperature between interdigitated gel phase (L beta I) and ripple phase (P beta') is lower in 2H2O than in 1H2O, and transition between the ripple phase (P beta') and fluid phase (L alpha) in 2H2O occurs at a temperature slightly higher than in 1H2O. In dipalmitoylphosphatidylcholine (DPPC) dispersions, on the other hand, transition temperature between lamellar gel phase (L beta') and ripple phase is higher in 2H2O than in 1H2O. These results suggest that the interdigitated gel phase is more stable in 1H2O than in 2H2O. To account for the shift of transition temperature by the water substitution, difference of interfacial energies between these aqueous environments is discussed.  相似文献   

5.
Fourier transform infrared spectroscopy was applied to study the structural and thermal properties of bovine brain galactocerebroside (GalCer) containing amide linked non-hydroxylated or alpha-hydroxy fatty acids (NFA- and HFA-GalCer, respectively). Over the temperature range 0-90 degrees C, both GalCer displayed complex thermal transitions, characteristic of polymorphic phase behavior. Upon heating, aqueous dispersions of NFA- and HFA-GalCer exhibited high order-disorder transition temperatures near 80 and 72 degrees C, respectively. En route to the chain melting transition, the patterns of the amide I band of NFA-GalCer were indicative of two different lamellar crystalline phases, whereas those of HFA-GalCer were suggestive of lamellar gel and crystalline bilayers. Cooling from the liquid-crystalline phase resulted in the formation of another crystalline phase of NFA-GalCer and a gel phase of HFA-GalCer, with a phase transition near 62 and 66 degrees C, respectively. Prolonged incubation of GalCer bilayers at 38 degrees C revealed conversions among lamellar crystalline phases (NFA-GalCer) or between lamellar gel and crystalline bilayer structures (HFA-GalCer). Spectral changes indicated that the temperature and/or time induced formation of the lamellar crystalline structures of NFA- and HFA-GalCer was accompanied by partial dehydration and by rearrangements of the hydrogen bonding network and bilayer packing mode of GalCer.  相似文献   

6.
M D King  D Marsh 《Biochemistry》1989,28(13):5643-5647
The polymorphic phase behavior of 1-palmitoyl-2-lyso-sn-glycero-3-phosphocholine dispersions in excess water has been studied as a function of temperature and poly(ethylene glycol) (PEG) concentration, using proton dipolar-decoupled 31P NMR spectroscopy and turbidity measurements. The phase behavior was found to depend on both lipid concentration and PEG concentration, and most of the NMR experiments were conducted at a lipid concentration of 15 mg/mL. At low PEG concentrations (0-12 wt %), a thermotropic transition occurs at 3-5 degrees C with increasing temperature, from an interdigitated lamellar gel (L beta i) phase to a normal micellar phase. At intermediate PEG concentrations (12-20 wt %), thermotropic transitions take place with increasing temperature, first from the lamellar gel phase to a fluid cubic (Q alpha) phase and then at higher temperatures from the cubic phase to the micellar phase. At intermediate PEG concentrations above the former range (20-30 wt %), thermotropic transitions take place with increasing temperature, first from the lamellar gel phase to the cubic phase, then from the cubic phase to a normal hexagonal (HI) phase, and finally from the hexagonal phase to the micellar phase. At high PEG concentrations (greater than 30 wt %), a thermotropic transition takes place with increasing temperature from the lamellar gel phase directly to the fluid hexagonal phase. At these high PEG concentrations, the micellar phase is not attained within the accessible temperature range (less than or equal to 90 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Calorimetric, X-ray diffraction, and 31P nuclear magnetic resonance (NMR) studies of aqueous dispersions of 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) gel phases at low temperatures (-60 to 22 degrees C) show thermal, structural, and dynamic differences when compared to aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) gel phases at corresponding temperatures. Differential scanning calorimetry of DHPC dispersions demonstrates a reversible, low-enthalpy "subtransition" at 4 degrees C in contrast to the conditionally reversible, high-enthalpy subtransition observed at 17 degrees C for annealed DPPC bilayers. X-ray diffraction studies indicate that DHPC dispersions form a lamellar gel phase with dav congruent to 46 A both above and below the "subtransition". It is suggested that the reduced dav observed for DHPC (46 A as compared to 64 A in DPPC) is due to an interdigitated lamellar gel phase which exists at all temperatures below the pretransition at 35 degrees C. 31P NMR spectra of DHPC gel-phase bilayers show an axially symmetric chemical shift anisotropy powder pattern which remains sharp down to -20 degrees C, suggesting the presence of fast axial diffusion. In contrast, 31P spectra of DPPC bilayers indicate this type of motion is frozen out at approximately 0 degrees C.  相似文献   

8.
Formation of well ordered lamellar subgel (SGII) phase in aqueous dispersions of L-dipalmitoylphosphatidylcholine upon cooling from the lamellar gel phase, without low-temperature equilibration, is observed in real time using synchrotron x-ray diffraction. It has the same lamellar repeat period as the gel phase from which it was formed but differs in its wide-angle diffraction pattern. The SGII phase forms at about 7 degrees C upon cooling at 2 degrees C/min. In temperature jump experiments at 1 degree C/s from 50 to -5 degrees C, the relaxation time of the lamellar gel-SGII transition is found to be approximately 15 s. The conversion between the lamellar gel and SGII phase is cooperative and rapidly reversible. Upon heating, it coincides in temperature with an endothermic event with a calorimetric enthalpy of 0.35 kcal/mol, the so-called sub-subtransition. Similar sub-subtransitions are also observed calorimetrically at temperatures approximately 10 degrees C below the subtransition, without low-temperature storage, in aqueous dispersions of L-dimyristoylphosphatidylcholine and L-distearoylphosphatidylcholine, but not in racemic DL-dipalmitoylphosphatidylcholine. The formation of the equilibrium lamellar crystalline Lc phase appears to take place only from within the SGII phase.  相似文献   

9.
A combination of differential scanning calorimetry (DSC) and X-ray diffraction have been used to study the kinetics of formation and the structure of the low-temperature phase of 1-stearoyl-lysophosphatidylcholine (18:0-lysoPC). For water contents greater than 40 weight %, DSC shows a sharp endothermic transition at 27 degrees C (delta H = 6.75 kcal/mol) corresponding to a low-temperature phase----micelle transition. This sharp transition is not reversible, but is regenerated in a time and temperature-dependent manner. For example, with incubation at 0 degrees C the maximum transition enthalpy (delta H = 6.75 kcal/mol) is generated in about 45 min after an initial slow nucleation process of approx. 20 min. The kinetics of formation of the low-temperature phase is accelerated at lower temperatures and may be related to the disruption of 18:0-lysoPC micelles by ice crystal formation. X-ray diffraction patterns of 18:0-lysoPC recorded at 10 degrees C over the hydration range 20-80% are characteristic of a lamellar gel phase with tilted hydrocarbon chains with the bilayer repeat distance increasing from 47.6 A at 20% hydration to a maximum of 59.4 A at 39% hydration. At this maximum hydration, approx. 19 molecules of water are bound per molecule of 18:0-lysoPC. Electron density profiles show a phosphate-phosphate distance of 30 A, indicating an interdigitated lamellar gel phase for 18:0-lysoPC at all hydration values. The angle of chain tilt is calculated to be between 20 and 30 degrees. For water contents greater than 40%, this interdigitated lamellar phase converts to the micellar phase at 27 degrees C in a kinetically fast process, while the reverse (micelle----interdigitated bilayer) transition is a kinetically slower process (see also Wu, W. and Huang, C. (1983) Biochemistry 22, 5068-5073).  相似文献   

10.
The phase behavior of mixed lipid dispersions representing the inner leaflet of the cell membrane has been characterized by X-ray diffraction. Aqueous dispersions of phosphatidylethanolamine:phosphatidylserine (4:1 mole/mole) have a heterogeneous structure comprising an inverted hexagonal phase H(II) and a lamellar phase. Both phases coexist in the temperature range 20-45 degrees C. The fluid-to-gel mid-transition temperature of the lamellar phase assigned to phosphatidylserine is decreased from 27 to 24 degrees C in the presence of calcium. Addition of sphingomyelin to phosphatidylethanolamine/phosphatidylserine prevents phase separation of the hexagonal H(II) phase of phosphatidylethanolamine but the ternary mixture phase separates into two lamellar phases of periodcity 6.2 and 5.6 nm, respectively. The 6.2-nm periodicity is assigned to the gel phase enriched in sphingomyelin of molecular species comprising predominantly long saturated hydrocarbon chains because it undergoes a gel-to-fluid phase transition above 40 degrees C. The coexisting fluid phase we assign to phosphatidylethanolamine and phosphatidylserine and low melting point molecular species of sphingomyelin which suppresses the tendency of phosphatidylethanolamine to phase-separate into hexagonal H(II) structure. There is evidence for considerable hysteresis in the separation of lamellar fluid and gel phases during cooling. The addition of cholesterol prevents phase separation of the gel phase of high melting point sphingomyelin in mixtures with phosphatidylserine and phosphatidylethanolamine. In the quaternary mixture the lamellar fluid phase, however, is phase separated into two lamellar phases of periodicities of 6.3 and 5.6 nm (20 degrees C), respectively. The lamellar phase of periodicity 5.6 nm is assigned to a phase enriched in aminoglycerophospholipids and the periodicity 6.3 nm to a liquid-ordered phase formed from cholesterol and high melting point molecular species of sphingomyelin characterized previously by ESR. Substituting 7-dehydrocholesterol for cholesterol did not result in evidence for lamellar phase separation in the mixture within the temperature range 20-40 degrees C. The specificity of cholesterol in creation of liquid-ordered lamellar phase is inferred.  相似文献   

11.
The effect of alpha-tocopherol on the thermotropic phase transition behaviour of aqueous dispersions of dimyristoylphosphatidylethanolamine was examined using synchrotron X-ray diffraction methods. The temperature of gel to liquid-crystalline (Lbeta-->Lalpha) phase transition decreases from 49.5 to 44.5 degrees C and temperature range where gel and liquid-crystalline phases coexist increases from 4 to 8 degrees C with increasing concentration of alpha-tocopherol up to 20 mol%. Codispersion of dimyristoylphosphatidylethanolamine containing 2.5 mol% alpha-tocopherol gives similar lamellar diffraction patterns as those of the pure phospholipid both in heating and cooling scans. With 5 mol% alpha-tocopherol in the phospholipid, however, an inverted hexagonal phase is induced which coexists with the lamellar gel phase at temperatures just before transition to liquid-crystalline lamellar phase. The presence of 10 mol% alpha-tocopherol shows a more pronounced inverted hexagonal phase in the lamellar gel phase but, in addition, another non-lamellar phase appears with the lamellar liquid-crystalline phase at higher temperature. This non-lamellar phase coexists with the lamellar liquid-crystalline phase of the pure phospholipid and can be indexed by six diffraction orders to a cubic phase of Pn3m or Pn3 space groups and with a lattice constant of 12.52+/-0.01 nm at 84 degrees C. In mixed aqueous dispersions containing 20 mol% alpha-tocopherol, only inverted hexagonal phase and lamellar phase were observed. The only change seen in the wide-angle scattering region was a transition from sharp symmetrical diffraction peak at 0.43 nm, typical of gel phases, to broad peaks centred at 0.47 nm signifying disordered hydrocarbon chains in all the mixtures examined. Electron density calculations through the lamellar repeat of the gel phase using six orders of reflection indicated no difference in bilayer thickness due to the presence of 10 mol% alpha-tocopherol. The results were interpreted to indicate that alpha-tocopherol is not randomly distributed throughout the phospholipid molecules oriented in bilayer configuration, but it exists either as domains coexisting with gel phase bilayers of pure phospholipid at temperatures lower than Tm or, at higher temperatures, as inverted hexagonal phase consisting of a defined stoichiometry of phospholipid and alpha-tocopherol molecules.  相似文献   

12.
The effect of dolichol C(95) on the structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine and stearoyloleoylphosphatidylethanolamine has been examined by synchrotron X-ray diffraction and differential scanning calorimetry. The presence of dolichol C(95) had no detectable effects on the temperature of either the gel to ripple or the ripple to liquid-crystal phase transition of dipalmitoylphosphatidylcholine. A proportionate increase of a few degrees in the temperature of the gel to lamellar liquid-crystal phase transition is observed in dispersions of dipalmitoylphosphatidylethanolamine and significantly there is a decrease in the temperature of the lamellar to non-lamellar phase transition of stearoyloleoylphosphatidylethanolamine. There was no significant change in the bilayer repeat spacing of all three mixed dispersions in gel phase in the presence of up to 20 mol% dolichol C(95). Electron density calculations showed that there was no change of bilayer thickness of dipalmitoylphosphatidylcholine with incorporation of up to 7.5 mol% dolichol C(95). These data suggest that effect of dolichol on the phospholipid model membranes depend on both the head group and the hydrocarbon chains of the phospholipid molecules. The presence of dolichol in phosphatidylcholine bilayers conforms to a model in which the polyisoprene compound is phase separated into a central domain sandwiched between the two monolayers in gel phase. In bilayers of phosphatidylethanolamines dolichol tends to stabilize the bilayers in gel phase at low temperatures and destabilize the bilayers in lamellar disordered structure at high temperatures. Non-lamellar structures coexist with lamellar disordered phase over a wide temperature range suggesting that dolichol is enriched in domains of non-lamellar structure and depleted from lamellar phase. These findings are useful to understand the function of dolichol in cell membranes.  相似文献   

13.
The effect of alpha-tocopherol on the thermotropic phase behaviour and structure of aqueous dispersions of 1,2-di-lauryl-sn-glycero-3-phosphoethanolamine was examined by synchrotron X-ray diffraction. The pure phospholipid exhibited a lamellar gel to liquid-crystal phase transition at 30 degrees C on heating at 3 degrees C min(-1) between 10 degrees C and 90 degrees C. The transition was reversible with a temperature hysteresis of 0.3 degrees C on cooling. At temperatures less than 10 degrees C only lamellar gel phase of the pure phospholipid was seen in co-dispersions of up to 20 mol % alpha-tocopherol. The presence of 2.5 mol % alpha-tocopherol caused the appearance of inverted hexagonal phase at temperatures just below the main phase transition temperature that co-existed with the lamellar gel phase. The intensity of scattering from the hexagonal-II phase increased with increasing proportion of alpha-tocopherol in the mixture and in proportions greater than 10 mol % it persisted at temperatures above the main transition and co-existed with the lamellar liquid-crystal phase of the pure phospholipid. At higher temperatures all co-dispersions containing up to 15 mol % alpha-tocopherol showed the presence of cubic phases. These phases indexed a Pn3m or Pn3 space grouping. When the proportion of alpha-tocopherol was increased to 20 mol % the only non-lamellar phase observed was inverted hexagonal phase. This phase co-existed with lamellar gel and liquid-crystal phases of the pure phospholipid, but was the only phase present at temperatures >60 degrees C. The X-ray diffraction data were used to construct a partial phase diagram of the lipid mixture in excess water between 10 degrees and 90 degrees C and up to 20 mol % alpha-tocopherol in phospholipid.  相似文献   

14.
P T Wong  C H Huang 《Biochemistry》1989,28(3):1259-1263
The barotropic behavior of D2O dispersions of 1-stearoyl-2-caproyl-sn-glycero-3-phosphocholine, C(18):C(10)PC, a highly asymmetric phospholipid in which the length of the fully extended acyl chain at the sn-1 position of the glycerol backbone is twice as long as that at the sn-2 position, has been investigated by high-pressure Fourier transform infrared spectroscopy. This asymmetric phosphatidylcholine bilayer at room temperature displays a pressure-induced phase transition corresponding to the liquid-crystalline----gel phase transition at 1.4 kbar. A conformational ordering of the lipid acyl chains is observed to take place abruptly at the transition pressure of 1.4 kbar. However, the lamellar lipid molecules and their acyl chains remain to be orientationally disordered in the gel phase until the applied pressure reaches 5.5 kbar. In the gel phase of fully hydrated C(18):C(10)PC, the asymmetric lipid molecules assemble into mixed interdigitated bilayers with perpendicular orientation of the zigzag planes among neighboring acyl chains. The role of excess water played in the interchain structure and the behavior of excess water and bound water under high pressure are also discussed.  相似文献   

15.
M J Swamy  D Marsh 《Biochemistry》2001,40(49):14869-14877
The interaction of avidin with aqueous dispersions of N-biotinylphosphatidylethanolamines, of acyl chain lengths C(14:0), C(16:0), and C(18:0), was studied by using spin-label electron spin resonance (ESR) spectroscopy, (31)P nuclear magnetic resonance ((31)P NMR) spectroscopy, differential scanning calorimetry, and chemical binding assays. In neutral buffer containing 1 M NaCl, binding of avidin is due to specific interaction with the biotinyl lipid headgroup because avidin presaturated with biotin does not bind. Saturation binding of the protein corresponds to a ratio of 50 lipid molecules per tetrameric avidin. Phospholipid probes spin-labeled at various positions between C-4 and C-14 in the sn-2 chain were used to characterize the effects of avidin binding on the lipid chain dynamics. In the fluid phase, protein binding results in a decrease of chain mobility at all positions of labeling while the flexibility gradient characteristic of a liquid-crystalline lipid phase is maintained. There is no evidence from the spin-label ESR spectra for penetration of the protein into the hydrophobic interior of the membrane. At temperatures corresponding to the gel phase, the lipid chain mobility increases on binding protein. The near constancy in mobility found with chain position, however, suggests that in the gel phase the lipid chains remain interdigitated upon binding avidin. Binding of increasing amounts of avidin results in a gradual decrease of the lipid chain-melting transition enthalpy with only small change in the transition temperature. At saturation binding, the calorimetric enthalpy is reduced to zero. (31)P NMR spectroscopy indicates that protein binding increases the surface curvature of dispersions of all three biotin lipids. The C(14:0) biotin lipid yields isotropic (31)P NMR spectra in the presence of avidin at all temperatures between 10 and 70 degrees C, in contrast to dispersions of the lipid alone, which give lamellar spectra at low temperature that become isotropic at the chain-melting temperature. In the presence of avidin, the C(16:0) and C(18:0) biotin lipids yield primarily lamellar (31)P NMR spectra at low temperature with a small isotropic component; the intensity of the isotropic component increases with temperature, and the spectra narrow and become totally isotropic at high temperature, in contrast to dispersions of the lipids alone, which give lamellar spectra in the fluid phase. The binding of avidin therefore reduces the cooperativity of the biotin lipid packing, regulates the mobility of the lipid chains, and enhances the surface curvature of the lipid aggregates. These effects may be important for both lateral and transbilayer communication in the membrane.  相似文献   

16.
The ether-linked phosphatidylcholines 1-eicosyl-2-dodecyl-rac-glycero-3-phosphocholine (EDPC) and 1-dodecyl-2-eicosyl-rac-glycero-3-phosphocholine (DEPC) have been investigated by differential scanning calorimetry (DSC) and X-ray diffraction. DSC of hydrated EDPC shows a single endothermic transition at 34.8 degrees C (delta H = 11.2 kcal/mol) after storage at -4 degrees C while DEPC shows three endothermic transitions at 7.7 and approximately 9.0 degrees C (combined delta H approximately 0.4 kcal/mol) and at 25.2 degrees C (delta H = 4.7 kcal/mol). Both the single transition of EDPC and the two higher temperature transitions of DEPC are reversible, while the approximately 7.7 degrees C transition of DEPC increases in enthalpy on low-temperature incubation. At 23 degrees C, X-ray diffraction of hydrated EDPC shows a sharp reflection at 4.2 A together with lamellar reflections corresponding to a bilayer periodicity, d = 56.2 A. Electron density profiles derived from swelling experiments show a phosphate-phosphate intrabilayer distance, dp-p, of 36 A at all hydrations. This, together with calculated lipid thickness and molecular area considerations, suggests an interdigitated, three chains per head group, bilayer gel phase, L beta*, with no hydrocarbon chain tilt. This is structurally analogous to the bilayer gel phase of hydrated 18:0/10:0 ester PC [McIntosh, T. J., Simon, S. A., Ellington, J. C., Jr., & Porter, N. A. (1984) Biochemistry 23, 4038]. In contrast, DEPC at -4 degrees C shows an L beta' bilayer gel phase with tilted hydrocarbon chains (d = 61.1 A). However, this transforms above 9 degrees C to an interdigitated, triple-chain, L beta* bilayer gel phase (identical with that of EDPC) with d = 56.6 A and a phosphate-phosphate distance of 36 A. Above their respective chain melting transitions, Tm, EDPC and DEPC exhibit liquid-crystalline L alpha bilayer phases with d = 64.5 and 65.0 A at 55 and 45 degrees C, respectively. The ability of both EDPC and DEPC to form triple-chain interdigitated gel-state bilayers suggests that the conformational inequivalence at the sn-1 and sn-2 positions is less pronounced in the ether-linked PCs compared to the ester-linked PCs, where only one of the positional isomers, e.g., 18:0/10:0 PC but not 10:0/18:0 PC, forms the triple-chain structure (J. Mattai, unpublished results). Thus, a different conformation around the glycerol is predicted for ether-linked PC compared to ester-linked PC.  相似文献   

17.
1-Behenyl-2-lauryl-sn-glycero-3-phosphocholine (22/12 PC) belongs to a unique group of phospholipids in which the molecule has one acyl chain almost twice as long as the other. The temperature-composition phase diagram for this lipid in the range of 25-65 degrees C, and 0 to 84.3% (w/w) water has been constructed by using the isoplethal method in the heating direction and x-ray diffraction for phase identification and structure characterization. At water contents between 10.3 and 34% (w/w) and at temperatures below 43 degrees C, a single mixed interdigitated lamellar gel phase (Lm beta, [symbol: see text]) of the type described by Hui et al. (1984. Biochemistry. 23:5570-5577) and McIntosh et al. (1984. Biochemistry. 23:4038-4044) was found. A second phase consisting of bulk aqueous solution coexists with the Lm beta phase at hydration levels above 34% (w/w) water in the temperature range between 25 and 43 degrees C. Above 43 degrees C, a partially interdigitated lamellar liquid crystalline (Lp alpha) phase ([symbol: see text]) is seen in the water concentration range extending from 0 to 84.3% (w/w). The pure Lp alpha phase is found below 43% (w/w) water, while coexistence of the Lp alpha phase and the bulk aqueous solution is observed above this water concentration which marks the hydration boundary. Interestingly, the latter boundary for both Lm beta and Lp alpha phases is nearly vertical in the temperature range studied. Furthermore, the lamellar chain-melting transition temperature appears to be relatively insensitive to hydration in the range 0-85% (w/w) water. We have confirmed the identify of the Lm beta phase by constructing a 5.7-A resolution electron density profile on oriented samples by the swelling method. Temperature-induced chain melting effects an increase in lipid bilayer thickness suggesting that the Lp alpha phase has chains packed in the partially as opposed to the mixed interdigitated configuration. Unlike the symmetric phosphatidylcholines a ripple (P beta') phase was not found as an intermediate between the low and high temperature lamellar phases of 22/12 PC. The specific volume of 22/12 PC is 940 (+/- 1) microliter/g and 946 (+/- 1) microliter/g in the hydrated lamellar gel state at 28 (+/- 2) and 40 (+/- 2) degrees C, respectively, from neutral buoyancy experiments. Based on measurements of the temperature dependence of the various lattice parameters of the different phases encountered in this study the corresponding lattice thermal expansion coefficients have been measured. These are discussed and their dependence on lipid hydration is reported.  相似文献   

18.
Structure and properties of mixed-chain phosphatidylcholine bilayers   总被引:5,自引:0,他引:5  
J Shah  P K Sripada  G G Shipley 《Biochemistry》1990,29(17):4254-4262
The structural and thermotropic properties of the hydrated mixed-chain phosphatidylcholines (PCs), C(8):C(18)-PC and C(10):C(18)-PC, have been studied by X-ray diffraction and differential scanning calorimetry. For fully hydrated C(8):C(18)-PC, the reversible chain melting transition is observed at 9.9 degrees C (delta H = 7.3 kcal/mol). X-ray diffraction at 0 degrees C (below the chain melting transition) shows a small bilayer repeat distance, d = 51.0 A, and a sharp, symmetric wide-angle reflection at 4.1 A, characteristic of a mixed interdigitated bilayer gel phase [see McIntosh, T. J., Simon, S. A., Ellington, J. C., Jr., & Porter, N. A. (1984) Biochemistry 23, 4038-4044; Hui, S. W., Mason, J. T., & Huang, C. (1984) Biochemistry 23, 5570-5577]. At 30 degrees C (above the chain melting transition), a diffuse band is observed at 4.5 A characteristic of an L alpha phase but with an increased bilayer periodicity, d = 61 A. Both the calculated lipid bilayer thickness (d1) and that determined directly from electron density profiles (dp-p) show unusual increases as a consequence of chain melting. In contrast, fully hydrated C(10):C(18)-PC shows an asymmetric endothermic transition at 11.8 degrees C. Below the chain melting transition, two lamellar phases are present, corresponding to coexisting interdigitated (d = 52.3 A) and noninterdigitated (d = 62.5 A) bilayer gel phases. The relative amounts of these phases depend upon the low-temperature incubation and/or hydration conditions, suggesting conversions, albeit kinetically complex, between metastable, and stable phases. The different behavior of C(8):C(18)-PC and C(10):C(18)-PC, as well as their positional isomers, is rationalized in terms of the molecular conformation of PC.  相似文献   

19.
Using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), we determined some thermodynamic and structural parameters for a series of amino acid-linked dialkyl lipids containing a glutamic acid-succinate headgroup and di-alkyl chains: C12, C14, C16 and C18 in CHES buffer, pH 10. Upon heating, DSC shows that the C12, C14 and annealed C16 lipids undergo a single transition which XRD shows is from a lamellar, chain ordered subgel phase to a fluid phase. This single transition splits into two transitions for C18, and FTIR shows that the upper main transition is predominantly the melting of the hydrocarbon chains whereas the lower transition involves changes in the headgroup ordering as well as changes in the lateral packing of the chains. For short incubation times at low temperature, the C16 lipid appears to behave like the C18 lipid, but appropriate annealing at low temperatures indicates that its true equilibrium behavior is like the shorter chain lipids. XRD shows that the C12 lipid readily converts into a highly ordered subgel phase upon cooling and suggests a model with untilted, interdigitated chains and an area of 77.2A(2)/4 chains, with a distorted orthorhombic unit subcell, a=9.0A, b=4.3A and beta=92.7 degrees . As the chain length n increases, subgel formation is slowed, but untilted, interdigitated chains prevail.  相似文献   

20.
Salt-induced fluid lamellar (L alpha) to inverted hexagonal (HII) phase transitions have been studied in diphosphatidylglycerols (cardiolipins) with different acyl chain compositions, using 31P nuclear magnetic resonance (NMR) spectroscopy. Cardiolipins with four myristoyl chains, tetramyristoyl cardiolipin (TMCL), and with four oleoyl chains, tetraoleoyl cardiolipin (TOCL), were synthesized chemically. TMCL was found to undergo a thermotropic lamellar gel to lamellar liquid-crystalline phase transition at 33-35 degrees C. This lipid exhibited an axially symmetric 31P-NMR spectrum corresponding to a lamellar phase at all NaCl concentrations between 0 and 6 M. In the case of TOCL, formation of an HII phase was induced by salt concentrations of 3.5 M NaCl or greater. These observations, taken together with earlier findings that bovine heart cardiolipin aqueous dispersions adopt an HII phase at salt concentrations of 1.5 M NaCl or greater, indicate that increasing unsaturation and length of the acyl chains favour formation of the HII phase in diphosphatidylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号