首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether vitamin E plays a role in the protection against potential free radical formation and related biochemical changes in hypoxic, ischemic and Ca2+-depleted rat heart upon normal reperfusion.

In the heart of normally fed rats a decrease in the activity of superoxide dismutase and the capacity of the glutathione system, factors of the cellular protective mechanisms against free radicals, occurred upon exposure to the above mentioned treatments. This decrease was not further enhanced if vitamin E-deficient rat hearts were treated. Vitamin E-deficiency, however, led to detectable peroxidation of lipids if Ca2+-depleted or hypoxic hearts were reperfused. Lipid peroxidation was measured as the formation of thiobarbituric acid reactive material, which is readily formed during this process. Reflow after ischemia did not induce lipid peroxidation either in normal or in vitamin E-deficient rat heart.

Since changes in Ca2+ -homeostasis are thought to be primarily responsible for the Ca2+-reperfusion injury, a role for Ca2+-ions in lipid peroxidative processes, either directly or indirectly, seems indicated. Furthermore the results imply that even a sharp and extensive decrease of reduced glutathione, as seen upon Ca2+ -repletion after a period of Ca2+ -depletion, does not necessarily induce peroxidation of lipids in heart tissue. Obviously, vitamin E is very important in the protection of cardiac membranes. Replenishment of the water-soluble protective factors in the heart seems, however, more important during above mentioned treatments, especially since repair of the vitamin E-free radical is dependent on water-soluble factors.  相似文献   

2.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

3.
The spin trapping ESR technique was applied to investigate oxygen-derived radicals in ischemic and post-ischemic rat hearts. Using 5,5'-dimethyl-l-pyrroline-N-oxide, carbon-centered radicals were identified during ischemia and oxy-radical adducts (superoxide anion radical, O.-2 and hydroxyl radicals, .OH) in post-ischemic rat heart. The formation of these spin adducts was inhibited by superoxide dismutase, suggesting that superoxide plays a role in the adducts' formation. The results demonstrate that oxygen derived free radicals are important byproducts of abnormal oxidative metabolism during myocardial ischemic and reperfusion injuries.  相似文献   

4.
The aim of this work was to precisely determine the sites of the peroxidative action on unsatured lipids by oxygen-derived free radicals and the lytic cell damage on reoxygenated perfused hearts. The cellular load of lipid peroxidation products (malondialdehyde) during the reoxygenation was dependent on PO2. This unfavorable biochemical response was linked to creatine kinase leakage, alteration of coronary flow and mitochondrial injury. When an enzymatic (superoxide dismutase, 290 IU/minute) or tripeptide scavenger of oxygen radicals (reduced glutathione, 0.5 mmol/l) was administered at the end of hypoxia and during reoxygenation, the abnormal intolerance of hypoxic heart to molecular oxygen was significantly weakened; the load of lipid peroxides load, enzyme release, and vascular alteration were all reduced. Moreover, mitochondrial activity was enhanced and the oxygen-induced uncoupling of mitochondrial remained limited: both the respiratory control ratio (RCR) and the ADP/O ratio were higher than in control reoxygenated hearts. The inhibition by rotenone (100 mumol/l) of reoxidation of electron chain transfer during oxygen readmission also reduced the unfavorable cardiac accumulation of lipid peroxidation products and the release of creatine kinase. These data demonstrate that in the oxygen paradox, the peroxidative attack on lipids plays an important role in inducing alterations of sarcolemmal permeability and mitochondrial activity. An uncontrolled reactivation of oxidative function of mitochondria during reoxygenation enhances the synthesis of oxygen-derived free radicals and triggers the peroxidation of cardiac lipids resulting in irreversible injury to cellular and intracellular membranes.  相似文献   

5.
Probucol, a lipid-lowering drug, has been shown to offer protection against adriamycin-induced cardiomyopathy. In order to define the mechanism of this protection, we examined changes in antioxidants and lipid peroxidation in hearts as well as lipids in hearts and plasma from rats treated with either adriamycin or adriamycin and probucol with appropriate controls. Any potential free radical quenching as well as growth inhibitory effects of probucol were also examined using Chinese hamster ovary (CHO) cells in culture. In animal model, adriamycin caused a significant depression in glutathione peroxidase and increased plasma and cardiac lipids as well as lipid peroxidation. Probucol treatment modulated adriamycin-induced cardiomyopathic changes and increased glutathione peroxidase and superoxide dismutase activities. In the presence of adriamycin under hypoxic conditions, formation of adriamycin semiquinone radical was detected by ESR. The cell growth in these cultures was also inhibited by adriamycin in a dose-dependent manner. Probucol had no effect on adriamycin-induced growth inhibition as well as formation of semiquinone radicals. It is proposed that probucol protection against adriamycin cardiomyopathy is mediated by increased antioxidants and lipid-lowering without any effect on free radical production.  相似文献   

6.
Evidence of direct toxic effects of free radicals on the myocardium   总被引:2,自引:1,他引:1  
The hypothesis that oxygen-derived free radicals do indeed play a role in myocardial ischemic and reperfusion injury has received a lot of support. Experimental results have shown that free radical scavengers can protect against certain aspects of myocardial ischemic injury and that on reperfusion the heart approaches a level that is more normal than those hearts not receiving additional scavenging agents. Superoxide dismutase, catalase, glutathione peroxidase, hydroxyl radical scavengers and iron chelators such as desferrioxamine have proven successful in providing an increased level of recovery. These results indicate, as would be expected, that superoxide, hydrogen peroxide and hydroxyl radicals may all, at some point, either contribute to the injury or be important in generating a subsequent radical which causes damage. In addition, solutions capable of generating free radicals have been shown to cause damage to myocardial cells and the vascular endothelium that is similar to the damage observed during myocardial ischemic and reperfusion injury. Alterations in function, structure, flow, and membrane biochemistry have been documented and compared to ischemic injury. The continued investigation of the role of free radicals in ischemic injury is warranted in the hope of further elucidating the mechanisms involved in free radical injury, the sources of their generation, and in defining a treatment that will provide significant protection against this particular aspect of ischemic damage.  相似文献   

7.
Although perfusion of the heart with calcium-free medium for a brief period followed by reperfusion with calcium-containing medium results in marked structural derangements (calcium paradox), the mechanisms for this cell damage are far from clear. Since activation of lysosomal enzymes has been associated with pathological damage, it was the purpose of this study to examine alterations in the activities of several lysosomal enzymes in rat hearts subjected to calcium paradox. No significant changes in the activities of beta-acetylglucosaminidase, beta-galactosidase, alpha-mannosidase, or acid phosphatase were seen in the homogenates of hearts exposed to the calcium paradox. However, there were dramatic alterations in the lysosomal enzyme activities in the sedimentable and nonsedimentable fractions during calcium paradox. The lysosomal enzyme activities were also detected in the perfusate collected during reperfusion with calcium-containing medium. These changes occurred during the reperfusion period since no alterations were apparent after calcium-free perfusion and were dependent upon the time of reperfusion with medium containing Ca2+ as well as the time of perfusion with Ca2+ -free medium before inducing Ca2+ paradox. These data indicate that alterations in lysosomal enzymes owing to reinstitution of calcium in Ca2+-deprived hearts may occur as a part of cardiac damage and general cellular disintegration.  相似文献   

8.
Oxygen radicals have been implicated as important mediators of myocardial ischemic and reperfusion injury. A major product of oxygen radical formation is the highly reactive hydroxyl radical via a biological Fenton reaction. The sarcoplasmic reticulum is one of the major target organelles injured by this process. Using a oxygen radical generating system consisting of dihydroxyfumarate and Fe3+-ADP, we studied lipid peroxidation and Ca2+-ATPase of cardiac sarcoplasmic reticulum. Incubation of sarcoplasmic reticulum with dihydroxyfumarate plus Fe3+-ADP significantly inhibited enzyme activity. Addition of superoxide dismutase, superoxide dismutase plus catalase (15 micrograms/ml) or iron chelator, deferoxamine (1.25-1000 microM) protected Ca2+-ATPase activity. Time course studies showed that this system inhibited enzyme activity in 7.5 to 10 min. Similar exposure of sarcoplasmic reticulum to dihydroxyfumarate plus Fe3+-ADP stimulated malondialdehyde formation. This effect was inhibited by superoxide dismutase, catalase, singlet oxygen, and hydroxyl radical scavengers. EPR spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide verified production of the hydroxyl radical. The combination of dihydroxyfumarate and Fe3+-ADP resulted in a spectrum of hydroxyl radical spin trap adduct, which was abolished by ethanol, catalase, mannitol, and superoxide dismutase. The results demonstrate the role of oxygen radicals in causing inactivation of Ca2+-ATPase and inhibition of lipid peroxidation of the sarcoplasmic reticulum which could possibly be one of the important mechanisms of oxygen radical-mediated myocardial injury.  相似文献   

9.
Previous studies have shown that exogenous lactate impairs mechanical function of reperfused ischaemic hearts, while pyruvate improves post-ischaemic recovery. The aim of this study was to investigate whether the diverging influence of exogenous lactate and pyruvate on functional recovery can be explained by an effect of the exogenous substrates on endogenous protecting mechanisms against oxygen-derived free radicals. Isolated working rat hearts were perfused by a Krebs-Henseleit bicarbonate buffer containing glucose (5 mM) as basal substrate and either lactate (5 mM) or pyruvate (5 mM) as cosubstrate. In hearts perfused with glucose as sole substrate the activity of glutathione reductase was decreased by 32% during 30 min of ischaemia (p<0.10 versus control value), while the activity of superoxide dismutase and catalase was reduced by 27 and 35%, respectively, during 5 min of reperfusion (p<0.10 versus control value). The GSH level in the glucose group was reduced by 29% following 30 min of ischaemia and 35 min of reperfusion (p<0.10). In lactate- and pyruvateperfused hearts there were no significant decreases of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity during 30 min of ischaemia, 5 min of reperfusion or 35 min of reperfusion. In pyruvate-perfused hearts the glutathione peroxidase activity was even increased by 43% during 30 min of ischaemia (p<0.05). Glutathione levels (reduced and oxidized) did not markedly change in the lactate and pyruvate groups. Thus, the endogenous defense mechanism against oxygen-derived free radicals is compromised at the onset of reperfusion when glucose as sole substrate is present, while addition of lactate or pyruvate prevents reduction of the endogenous capacity to scavenge oxygen-derived free radicals. The equivocal relationship between endogenous scavenging enzyme activity and haemodynamic recovery indicates that involvement of the endogenous antioxidants, if any, in functional recovery of the post-ischaemic heart is complex. Pyruvate may exert protective effects on mechanical function after mild ischaemia by functioning as exogenous scavenger in itself, as pyruvate is able to react with hydrogen peroxide.  相似文献   

10.
The role of oxygen free radicals in ischemia and reperfusion injury of skeletal muscle has not been well defined, partly because of the relative resistance of this tissue to normothermic ischemia. Under normal conditions small quantities of oxygen free radicals are produced but they are quenched by intracellular free radical scavenging enzymes (superoxide dismutase, catalase and glutathione peroxidase) or alpha-tocopherol. The increase in malondialdehyde suggests increased lipid peroxidation initiated by free radical reactions. Lipid peroxidation is potentially a very damaging process to the organized structure and function of membranes. The results of recent studies indicate that: a) oxygen free-radicals mediates, at least in part, the increased microvascular permeability produced by reoxygenation, b) free radical scavengers can reduce skeletal muscle necrosis occurring after prolonged ischemia. Additional evidence support the hypothesis of the interrelationship between ischemic tissue and inflammatory cells. So capillary plugging by granulocytes and oxygen free radical formation may contribute to the ischemic injury.  相似文献   

11.
Changes in the intramuscular pH oscillations were examined by the use of an antimony electrode upon perfusing the isolated rat heart under different experimental conditions. The pH oscillations were decreased upon perfusing the hearts with Na+- or Ca2+-free medium and increased upon perfusing with K+-free medium. Increasing the temperature of perfusion medium from 25 to 40 degrees C or omitting glucose from the perfusing medium decreased the magnitude of oscillations. On the other hand, complete interruption of the perfusion flow resulted in an increase in the amplitude of pH oscillation. An initial increase followed by a decrease in the pH oscillation was seen when hearts were perfused with medium containing lactic acid at pH 6.6. These results suggest that pH oscillations reflect fluctuations in myocardial metabolism.  相似文献   

12.
Both Ca2+ and free radicals (FR) are accumulated in temporarily ischemic myocardium and might cause reperfusion injury. Respiratory function measured by polarography of isolated heart mitochondria before or after the in vitro treatment with Ca2+ (1.2 microM) and/or FR showed that Ca2+ or FR per se showed no or weak effect on state 3, but cotreatment of Ca2+ and FR prominently deteriorated state 3, state 4 and RCI. The injury was speculated to occur at cytochrome c itself or its reductase from enzyme assay in the respiratory chain. Furthermore, contrary to the published data, the synergistic action was not mitigated by phospholipase A2 inhibitors (dibucaine, mepacrine), membrane stabilizers (lidocaine, coenzyme Q10), Ca entry blocker (verapamil) or superoxide dismutase, suggesting refractory to therapy.  相似文献   

13.
During 24-h in vitro heart preservation and reperfusion, irreversible tissue damage occurs caused by reactive oxygen intermediates, such as superoxide radicals, singlet oxygen, hydrogen peroxide, hydroperoxyl, hydroxyl radicals, as well as the peroxynitrite radical. Reduction of the related oxidative damage of reperfused ischemic tissue by free radical scavengers and metal chelators is of primary importance in maintaining heart function. We assessed whether deferoxamine (DFR) added to a cardioplegia solution decreased free radical formation during 24-h cold (5 degrees C) heart preservation and normothermic reperfusion (37 degrees C) in the Langendorff isolated perfused rat heart. The deferoxamine treated hearts were significantly (p less than .001) better preserved than the control hearts after 24 h of preservation with regard to recovery of left ventricular diastolic pressure, contractility (+dP/dt), relaxation (-dP/dt), creatine kinase release, and lipid peroxidation. DFR preserved cell membrane integrity and maintained 93% of left ventricular contractility. The evidence suggests that DFR reduces lipid peroxidation damage by reducing free radical formation and thereby maintaining normal coronary perfusion flow and myocardial function.  相似文献   

14.
The neuroexcitotoxin kainate has been used as a selective lesioning agent to model the etiology of a number of neurodegenerative disorders. Although excitotoxins cause susceptible neurons to undergo prolonged or repeated depolarization, the proximate metabolic pathology responsible for neuronal necrosis has remained elusive. We report here that kainate-induced death of cerebellar neurons in culture is prevented by inhibiting the enzyme xanthine oxidase, a cellular source of cytotoxic superoxide radicals (O2-.). Moreover, neurons are also protected from excitotoxin-induced death by the addition to the culture medium of either superoxide dismutase or mannitol, which scavenge superoxide and hydroxyl radicals, respectively, or serine protease inhibitor, which forestalls formation of xanthine oxidase. These findings indicate that excitotoxin-induced neuronal degeneration is mediated by superoxide radicals generated by xanthine oxidase, a mechanism partially analogous to that proposed for tissue damage seen upon reperfusion of ischemic tissues.  相似文献   

15.
Superoxide radicals have been shown to play a role in the cellular injury of reperfused ischemic tissues. We examined the protective effect of superoxide dismutase (SOD), a superoxide radical scavenger, on the reperfusion injury of replanted vascularized bone grafts after 4- and 8-hour periods of ischemia in a rat model. Histologic, fluorochrome, and histomorphometric analyses showed no difference between 4-hour superoxide dismutase-treated and control grafts, with both groups appearing viable. Similar analyses of the 8-hour ischemic grafts revealed both a qualitative and statistically significant quantitative difference (p less than 0.001) between the superoxide dismutase-treated and control grafts in parameters related to viability. Our results indicated that the administration of superoxide dismutase to free vascularized grafts by means of intraarterial perfusion after prolonged periods of warm ischemia significantly enhances the survival of these grafts.  相似文献   

16.
Effects of xanthine--xanthine oxidase produced oxygen radicals were studied in hypertrophied rat hearts in a Langendorff preparation. Heart hypertrophy was produced by banding of the abdominal aorta for 6 weeks. This resulted in a 22% increase in ventricle/body weight ratio compared with that of sham-operated controls. Perfusion with xanthine--xanthine oxidase caused contractile failure and a significant rise in the resting tension. Complete contractile failure in hypertrophied hearts was seen at 25.5 +/- 3.2 min, whereas in control hearts it happened at 14.4 +/- 5.6 min. Contractile failure due to oxygen radicals in both groups was associated with a decline in high energy phosphates, increased lipid peroxidation, and extensive structural damage. Sarcolemma in both groups became permeable to the extracellular tracer lanthanum. As compared with control, in hypertrophied hearts the malondialdehyde content, indicative of lipid peroxidation, was less by 40%; whereas superoxide dismutase, a free radical scavenger, was higher by a similar amount. These data show a greater capacity of the 6-week hypertrophied heart to withstand a free radical induced contractile failure. This delay in oxygen radical effect can be partially explained by the reduced lipid peroxide content and increased superoxide dismutase activity in the hypertrophied hearts.  相似文献   

17.
Alterations in cardiac membrane Ca2+ transport during oxidative stress   总被引:3,自引:0,他引:3  
Although cardiac dysfunction due to ischemia-reperfusion injury is considered to involve oxygen free radicals, the exact manner by which this oxidative stress affects the myocardium is not clear. As the occurrence of intracellular Ca2+ overload has been shown to play a critical role in the genesis of cellular damage due to ischemia-reperfusion, this study was undertaken to examine whether oxygen free radicals are involved in altering the sarcolemmal Ca2+-transport activities due to reperfusion injury. When isolated rat hearts were made globally ischemic for 30 min and then reperfused for 5 min, the Ca2+ -pump and Na+-Ca2+ exchange activities were depressed in the purified sarcolemmal fraction; these alterations were prevented when a free radical scavenger enzymes (superoxide dismutase plus catalase) were added to the reperfusion medium. Both the Ca2+- pump and Na+- Ca2+ exchange activities in control heart sarcolemmal preparations were depressed by activated oxygen-generating systems containing xanthine plus xanthine oxidase and H2O2; these changes were prevented by the inclusion of superoxide dismutase and catalase in the incubation medium. These results support the view that oxidative stress during ischemia-reperfusion may contribute towards the occurrence of intracellular Ca2+ overload and subsequent cell damage by depressing the sarcolemmal mechanisms governing the efflux of Ca2+ from the cardiac cell.  相似文献   

18.
Because hypertrophied rat hearts display an increase in antioxidant enzyme activities and because hypoxia-reoxygenation injury is known to involve free radicals, we tested the hypothesis that the hypertrophied heart may be more resistant to this type of injury. Hypertrophied rat hearts after 10 weeks of chronic pressure overload showed elevated superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and a decrease in lipid peroxidation as indicated by malondialdehyde (MDA) content. Glucose-free hypoxia for 15 min resulted in a complete failure of developed tension and about 200% increase in resting tension in both hypertrophied and sham control groups (p < 0.05). Upon reoxygenation for up to 30 min, hypertrophied hearts recovered developed tension to 60% and resting tension was higher by only 80% of prehypoxic values. In contrast, sham hearts showed only a 25% recovery of developed tension, whereas resting tension remained 130% higher than prehypoxic control values. During hypoxia, the SOD activity was significantly reduced in both sham and hypertrophied groups, whereas GSHPx was reduced only in the sham group. Upon reoxygenation there was no further change in these enzyme activities. Both the SOD and GSHPx activities in the hypertrophied group remained significantly higher than the corresponding reoxygenated sham hearts. During hypoxia, there was no apparent change in MDA content in either the sham or hypertrophied hearts. However, reoxygenation resulted in a significant increase in MDA content in both sham and hypertrophied hearts, but the MDA content was significantly less in the hypertrophied group (p < 0.05). It is suggested that maintenance of an adequate endogenous antioxidant reserve during hypoxia may be important in recovery upon reoxygenation.  相似文献   

19.
Occurrence of oxidative stress during myocardial reperfusion   总被引:1,自引:0,他引:1  
Reperfusion, without doubt, is the most effective way to treat the ischaemic myocardium. Late reperfusion may however cause further damage. Myocardial production of oxygen free radicals above the neutralizing capacity of the myocytes is an important cause of this reperfusion damage. There is evidence that prolonged ischaemia reduces the naturally occurring defence mechanisms of the heart against oxygen free radicals, particularly mitochondrial manganese superoxide dismutase, and intracellular pool of reduced glutathione. Consequently, reperfusion results in a severe oxidative damage, as evidenced by tissue accumulation and release of oxidized glutathione.An oxygen free radical-mediated impairment of mechanical function also occurs during reperfusion of human heart. In fact we observed during surgical reperfusion of coronary artery disease (CAD) patients, a prolonged and sustained release of oxidized glutathione;the degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function. These findings represent the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion.  相似文献   

20.
The production of oxygen free radicals can be stimulated by excess iron, cadmium, nickel, and the like. Inversely, copper, zinc, and selenium inhibit production, either via their own action or via antiradical metalloenzymes. The study involved determining the effect of zinc deficiency combined with chronic ethanol administration on the status of blood and tissue free radicals, as well as on cardiac function in isolated, perfused rats' hearts. Animals were fed a basic diet containing residual zinc at 0.2-0.3 ppm. Following a zinc deficiency lasting 5 wk, which during the last 4 wk was accompanied by chronic ethanol administration, hearts were submitted to ischemia for 30 min in vitro, followed by reperfusion. Biochemical analyses (zinc, superoxide dismutase, malondialdehyde, conjugated dienes, and so on) were performed in the blood and in the homogenates of different organs. The experimental zinc deficiency caused a slight decrease of superoxide dismutase activity, accompanied by increased production of peroxidated lipids. Ethanol administration appeared to increase the levels of peroxidated lipids in the heart. Finally, the combination of zinc deficiency and ethanol administration had very harmful effects, especially on lipid peroxidation and contractile function of the isolated, perfused heart in preischemic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号