首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The introduction of a predatory flatworm, Platydemus manokwari, has been considered a cause of the decline of endemic land snails on the tropical oceanic islands. To clarify the effect of P. manokwari on land snail survival in the field, we examined survival rates of snails experimentally placed in areas where snails are absent (i.e., P. manokwari is present) on Chichijima, Ogasawara (Bonin) Islands. We found that over 50 and 90 percent of the snails were dead after 3 and 11 d, respectively, and that the main cause of mortality was predation by P. manokwari.  相似文献   

2.
The flatworm Platydemus manokwari (Tricladida: Rhynchodemidae) preys on various species of land snail, and its introduction to areas outside of its native range is thought to have caused the extinction of native land snails on several Pacific islands. Platydemus manokwari occurs in areas where land snails have been absent since its invasion, suggesting that the flatworm can prey on animals other than land snails. To identify the alternative prey and prey preferences of P. manokwari, I examined the feeding ecology of P. manokwari under field and laboratory conditions. Individuals were observed attacking live earthworms in a forest where land snails are already extinct, on Chichijima, Ogasawara (Bonin) Islands, Japan. I also observed them attacking earthworms and a species of isopod and land snail in the lab. To prey on the worm, similar to other earthworm-eating flatworms, P. manokwari wrapped itself around the prey and fed on it by inserting its pharynx into the earthworm’s body. Large earthworms were able to escape P. manokwari attacks by autotomy, but the autotomized body parts were eaten. Several P. manokwari individuals together attacked earthworms that were larger than themselves. The laboratory experiments showed that such gregarious attacks increased predation success on both large earthworms and land snails. The flatworms also attacked the isopods, although the predation rate was low. These results demonstrate that P. manokwari is a polyphagous predator of slow-moving soil invertebrates (land snails, slugs, earthworms, and isopods) and that invasion by P. manokwari may directly and indirectly impact native soil fauna.  相似文献   

3.
Terrestrial micromolluscs (snails with an adult maximum shell dimension <5 mm) constitute a considerable proportion of the land snail fauna of the Pacific. However, micromolluscs are often underestimated in biological surveys because of size bias. It has been argued that visual searches are preferable on Pacific islands because: (1) size biases are limited based on the understanding that most native Pacific island land snails are very small, and (2) amount of labor is less than other methods such as soil surveys and adequate for inventory purposes (though not for abundance assessments). To test whether visual surveys and soil surveys were accurately recording all taxa, land snail inventories were completed in three forest reserves (5 sampling sites in each) on the island of Oahu, Hawaii. Visual surveys involved 30-min visual search in a 10 m2 site; soil surveys involved sieving leaf litter and topsoil from four 0.3 m2 quadrats and extracting snails with the aid of a microscope. The data indicate a size and microhabitat bias associated with both techniques. Visual surveys consistently collected large arboreal and litter-dwelling species but missed a significant portion of micromolluscs, while soil surveys collected micromolluscs but missed larger snails. Because of such biases, employing both methods is critical for collecting all taxa at a survey location. As such, we recommend that future land snail surveys on Pacific Islands incorporate both survey techniques. Obtaining a complete inventory is critical if we are to understand species distributions and patterns of diversity and make well-informed conservation recommendations.  相似文献   

4.
The purposeful introduction of the land snail Euglandina rosea, which feeds exclusively on snails and slugs, has been implicated as a major factor in the decline of diverse Pacific island land snail faunas. We report on the distribution, movement patterns, and microhabitat preferences of E. rosea in a gulch in the Waianae Mountains, Oahu, Hawaii, because such data will help focus management actions at a local scale to protect native snail populations in areas where E. rosea is established. The Waianae Mountains harbor many endangered or threatened snails, most currently found in isolated habitat patches near the ridges. Conversely, most living individuals (28/29) and shells (46/56) of E. rosea were collected within the gulch, which supported higher densities of other native and non‐native snails, and was cooler and more moist than the ridges. Thirteen individuals of E. rosea were tracked (eight directly using a bobbin and thread method, and five indirectly by mark–recapture); most (10/13) moved on average <2.5 m per week (range 0.1–25.21 m), and all stayed within the gulch. Members of E. rosea preferred leaf litter over open, fern/shrub, or wood microhabitats. There were large differences in the population density of E. rosea over small spatial scales, indicating that there may be places where native snail populations could persist even in areas where populations of E. rosea are established. Identifying areas with differing population densities of E. rosea is critical for not only understanding why some native snail species may be more vulnerable to extinction, but also to locate areas where predation pressure is low and conservation efforts will be most likely to succeed.  相似文献   

5.
Populations of Partulina redfieldi, an achatinelline tree snail studied in four isolated trees, grew 100–900% between 1983 and 1995. Beginning in 1995, populations declined by 85%, and shells of rat-killed snails accumulated beneath the trees. While rat-marked shells were always present in the study area, numbers increased significantly. Despite a rat-abatement program begun in 1995, the snails continued to disappear, which we conclude was due to continued rat migration into the study area, despite baiting, and a switch in rat-food preference toward the snails. In neighboring forest where tree canopies are more continuous, snail density is lower and rat predation is not apparent. Captive-bred snails were successfully introduced to a small unoccupied tree in the same area in 1989, and this population suffered the same fate as the natural snail populations. Since 2000, P. redfieldi populations have remained low and rat predation continues.  相似文献   

6.
Four partulid tree snail species are known from American Samoa. In 1998, we surveyed the recently established National Park (units on three islands: Tutuila, Tau, Ofu) and neighboring areas for partulids. On Tutuila, Samoana abbreviata, previously considered probably extinct, was extremely rare (15 snails seen); Samoana conica was more common (288 snails) but still rare; Eua zebrina was the most common (1102 snails), at one locality perhaps near its natural abundance. The species have similar distributions within the Park. All three have declined dramatically since the 1920s. Before 1980, when the predatory snail Euglandina rosea was introduced, habitat destruction, and perhaps rat predation and shell collecting, probably caused the decline. The Park provides protection to the Tutuila partulids by protecting habitat, although development is still a potential problem. But predation by E. rosea may yet cause their extinction. On Ofu (only outside the Park), 12 live Samoana thurstoni were found; 31 have now been recorded by western science. Also, an apparently robust population of E. zebrina, previously considered a Tutuila endemic, was found. Euglandina rosea is not on Ofu, so these populations are important remnants of the fauna. No partulids were found on Tau; none has ever been recorded there.  相似文献   

7.
Aim To test the performance of the choros model in an archipelago using two measures of environmental heterogeneity. The choros model is a simple, easy‐to‐use mathematical relationship which approaches species richness as a combined function of area and environmental heterogeneity. Location The archipelago of Skyros in the central Aegean Sea (Greece). Methods We surveyed land snails on 12 islands of the archipelago. We informed the choros model with habitat data based on natural history information from the land snail species assemblage. We contrast this with habitat information taken from traditional vegetation classification to study the behaviour of choros with different measures of environmental heterogeneity. R2 values and Akaike's information criterion (AIC) were used to compare the choros model and the Arrhenius species–area model. Path analysis was used to evaluate the variance in species richness explained by area and habitat diversity. Results Forty‐two land snail species were recorded, living in 33 different habitat types. The choros model with habitat types had more explanatory power than the classic species–area model and the choros model using vegetation types. This was true for all islands of the archipelago, as well as for the small islands alone. Combined effects of area and habitat diversity primarily explain species richness in the archipelago, but there is a decline when only small islands are considered. The effects of area are very low both for all the islands of the archipelago, and for the small islands alone. The variance explained by habitat diversity is low for the island group as a whole, but significantly increases for the small islands. Main conclusions The choros model is effective in describing species‐richness patterns of land snails in the Skyros Archipelago, incorporating ecologically relevant information on habitat occupancy and area. The choros model is more effective in explaining richness patterns on small islands. When using traditional vegetation types, the choros model performs worse than the classic species–area relationship, indicating that use of proxies for habitat diversity may be problematic. The slopes for choros and Arrhenius models both assert that, for land snails, the Skyros Archipelago is a portion of a larger biogeographical province. The choros model, informed by ecologically relevant habitat measures, in conjunction with path analysis points to the importance of habitat diversity in island species richness.  相似文献   

8.
The importance of pheromones in insect and mammal social systems is well documented, but few studies have addressed the role of pheromones in land snail behavior. In this investigation, we used a series of behavioral trials and direct analysis in real time mass spectrometry (MS) to test the hypothesis that land snails use mucous trails in orientation and chemical communication. We worked with six endemic Hawaiian land snail species in four genera, three subfamilies, and two families. We tested conspecific trail following in five of these species, and trail following occurred at a statistically significant frequency for each of the species tested (n=181, p‐values ranged <0.0001–0.0494). Percentage of conspecific trials that showed trail following ranged 66.7–94.1%. None of the interspecific tests revealed evidence of trail following among species (n=105, with p‐values of 0.0577–0.5000). Juvenile achatinelline snails did not follow trails of conspecific juveniles (n=30, p=0.5722) or adults (n=30, p=0.4278), nor did adults follow juvenile trails (n=30, p=0.5722). Comparative MS analysis of adult and juvenile trails showed distinct chemical signatures in the two groups. Signals corresponding to medium‐ and long‐chain fatty acids and other unidentified small molecules were present in adult but not in juvenile trails. Considered together, these results support the hypotheses that trail following could serve an important social and reproductive function. This discovery provides evidence for the presence of an ephemeral tree snail pheromone, which could have important implications for the conservation of these increasingly rare and threatened species.  相似文献   

9.
1. Grazing by invasive species can affect many aspects of an aquatic system, but most studies have focused on the direct effects on plants. We conducted mesocosm and laboratory experiments to examine the impact of the invasive apple snail Pomacea canaliculata on macrophytes, filamentous algae, nutrients and phytoplankton. 2. In a freshwater pond, we confined 500 g of Myriophyllum aquaticum or Eichhornia crassipes with 0, 2, 4 or 8 apple snails in 1 m × 1 m × 1 m enclosures for approximately 1 month. Apple snails grazed heavily on both species of macrophytes, with higher overall weight losses at higher snail densities. The damage patterns differed between the two macrophytes. In M. aquaticum, both leaves and stems suffered from substantial herbivory, whereas in E. crassipes, only the roots suffered significant weight reduction. 3. In addition to grazing on macrophytes, apple snails appeared to have controlled the growth of filamentous algae, as these did not develop in the snail treatments. The ability of P. canaliculata to control filamentous algae was supported by a laboratory experiment where the consumption was as high as 0.25 g g−1 snail DW d−1. Because of a lack of native herbivorous snails in the pond, the growth of filamentous algae (mainly Spirogyra sp.) reached 80.3 g m−2, forming a spongy pond scum in the no‐apple snail control. Together with previous reports that apple snails could eat the juveniles and eggs of other freshwater snails, our results indicated that P. canaliculata could have out‐competed native herbivorous snails from the pond by predation on their juveniles or eggs. Alternatively, P. canaliculata might have out‐competed them by monopolisation of food resources. 4. Nitrogen and phosphorous concentrations remained low throughout both experiments and were not correlated with apple snail density. The treatment effects on chlorophyll a (Chl a) and phytoplankton composition varied in the two experiments. In the M. aquaticum experiment, with increasing snail density, Chl a increased, and the phytoplankton community became dominated by Cryptophyceae. In the E. crassipes experiment, Chl a level was independent of snail density, but with increasing snail density, the phytoplankton community became co‐dominated by Cryptophyceae, Chlorophyceae and Bacillariophyceae. 5. Given the multiple effects of P. canaliculata on wetland biodiversity and function, management strategies should be developed to prevent its further spread. In invaded wetlands, strategies should be developed to eradicate the apple snail and re‐introduce native snails which can control the development of filamentous algae.  相似文献   

10.
Introduced predators have become major threats to native animal species in oceanic islands. A number of studies have shown that alien predators have caused serious extinctions of island endemics. However, little attention has been paid to the evolutionary impacts of alien predators on native species. The present study shows that predation by black rats, Rattus rattus, has resulted in ecological and morphological changes in the land snail Mandarina anijimana from the island of Anijima in the Ogasawara archipelago. The frequency of empty predated shells has increased over the past 17–19 years in southern areas of the island. The shells of these snails were found to be significantly higher, smaller and darker in the survey in 2006 than in the survey in 1987–1989 performed in central and southern parts of Anijima, where predation by Rattus was serious. M. anijimana were formerly restricted to shallow broad-leaved litter, whereas they are currently found in deep palm litter, where predation pressure from Rattus may be lower. This suggests that increased predation pressure by Rattus has changed the habitat use of M. anijimana. The close association between shell morphology and habitat use of Mandarina species suggests that the habitat shift induced by the predation of Rattus has caused these changes in the shell morphology of M. anijimana over a period of 17–19 years.  相似文献   

11.
On 8 May 2018 at 23:15?h physical contact was observed between an adult carnivorous land snail (Powelliphanta hochstetteri obscura) and an adult Maud Island frog (Leiopelma pakeka) on Te Pākeka/Maud Island, Marlborough Sounds, New Zealand. The land snail (40–45?mm diameter) was on its back with its foot under the frog (38.5?mm snout-vent length), raising the possibility that this was a predation attempt by the snail. Carnivorous endemic land snails are only known to consume a range of invertebrate species, especially earthworms. Our observation suggests that these snails might also opportunistically attempt to consume small ground vertebrates, although definitive evidence is required.  相似文献   

12.
Aim Predation is generally viewed as a factor that limits the distribution of animal prey species. However, in certain instances, such as seed dispersal, predation may enhance the dispersal capability of prey species. In a prior study, we found that land snails are preyed upon by the Japanese white‐eye (Zosterops japonicus) and the brown‐eared bulbul (Hypsipetes amaurotis) in the Ogasawara Islands. In this paper we provide experimental and field evidence indicating that land snails could potentially be dispersed through bird predation. Location Hahajima Island of the Ogasawara Islands in the western Pacific. Methods Experimentation was first performed to test whether the land snail Tornatellides boeningi could remain alive after being swallowed and passed through the bird digestive system. Next, in order to investigate the potential role of internal bird transport and dispersal of this snail, we investigated the relationship between the distribution of population genetic diversity in the snail and the regional geographical abundance of predatory birds. The population genetic structure of T. boeningi and isolation by distance were inferred with Arlequin . The association between nucleotide diversity in T. boeningi populations and population density of predators was examined using a generalized linear mixed model. We conducted a likelihood ratio test for the full model and for another model that removed the fixed effect. Results Of the 119 snails fed to Japanese white‐eyes and 55 snails fed to brown‐eared bulbuls, 14.3% and 16.4% of the snails, respectively, passed through the gut alive. Additionally, one snail gave birth to juveniles after emerging from a bird’s gut. Significant heterogeneity among the populations of T. boeningi on Hahajima was indicated using AMOVA; however, there was no evidence of isolation by distance. A positive correlation was found between levels of mitochondrial DNA variation among and within T. boeningi populations and the density of Japanese white‐eyes in the wild. Main conclusions Bird predation appears to be a method of dispersal for T. boeningi, and our results suggest that bird‐mediated dispersal plays a role in land snail population structure.  相似文献   

13.
Robert E. Ogren 《Hydrobiologia》1995,305(1-3):105-111
Predatory behaviour of land planarians is seldom observed or reported. Aspects reported are (1) finding prey; (2) attack behaviour; (3) capture using adhesive mucus, pharyngeal action, poisonous secretions, physical embrace; (4) feeding by extension of pharynx, releasing copious digestive fluid. The species Bipalium kewense, B. adventitium and B. pennsylvanicum attack earthworms, immobilizing them by physical holding, digesting by pharyngeal secretions and then ingesting the treated tissue. Group attacks on giant African land snails involving chemotactic tracking, occur in Platydemus manokwari and Endeavouria septemlineata. Specialized capture methods are used by some species; Rhynchodemus sylvaticus uses an expanded cephalic hood to capture small insects and in Africa, termites are captured by the elongated anterior of Microplana termitophaga as planarians wait within the colony air shaft openings to ensnare the workers in sticky mucus. The result of extensive predation by land planarians may seriously reduce the prey, e.g., providing effective population control of giant land snails by introduced Platydemus manokwari, or causing serious depletion of desirable earthworm populations by the exotic Artioposthia triangulata in North Ireland.  相似文献   

14.
Pomacea (Ampullariidae) snails, commonly referred to as apple snails, serve as prey for many freshwater-dependent predators, and some species are highly invasive. Identifying limits to apple snail distribution and abundance are pertinent to understanding their ecology. Calcium (Ca2+) availability and pH generally influences freshwater snail populations, yet scant data exist for Pomacea snails. We measured 6-week change in shell length (ΔSL) in P. paludosa in two laboratory experiments with varying Ca2+ and pH levels. ΔSL was significantly higher in ≥28 mg Ca2+/l compared with treatments ≤14 mg/l. Snails from populations living in low Ca2+/pH waters did not appear genetically predisposed at growing faster in these conditions. Smallest ΔSL was in snails treated with 3.6 mg Ca2+/l and pH < 6.5 water; these snails had signs of shell erosion. Shell crush weights (CWs) were lowest for snails grown in the lowest Ca2+/pH treatment. Smaller shells and lower CWs have implications for predation vulnerability and reproductive success. Our results are consistent with reports associating relatively low snail densities with relatively low Ca2+/pH waters, and they are consistent with the geographic distribution of P. paludosa as related to the underlying water chemistry as influenced by geology.  相似文献   

15.
A tale of two snails: is the cure worse than the disease?   总被引:1,自引:0,他引:1  
The giant African snail, Achatina fulica, has been introduced to many parts of Asia as well as to numerous islands in the Indian and Pacific Ocean, and has recently reached the West Indies. It has been widely decried as a disaster to agricultural economies and a threat to human health, leading to a clamor for the introduction of biological control agents. In fact, the lasting impact on agriculture may not be severe, and the human health risk is probably minor. This snail can be an aesthetic atrocity and a nuisance in other ways, however. Wherever A. fulica has achieved high densities, it has subsequently undergone a striking decline. Although this decline has been attributed to introduced predators, there is little evidence for this hypothesis; instead, epizootic disease seems to be at least part of the cause. However, the introduced predators, especially a New World snail, Euglandina rosea, have wrought havoc with the native land snails of many islands. They have already caused many extinctions and will almost certainly cause others. This predator was introduced by government agencies in many areas despite warnings from competent biologists that the effects could be disastrous. Pressures for such actions may become overwhelming in the face of a highly visible invasion, despite policies that should mandate extreme caution.  相似文献   

16.
The differential accumulation or loss of carbon and nutrients during decomposition can promote differentiation of wetland ecosystems, and contribute to landscape-scale heterogeneity. Tree islands are important ecosystems because they increase ecological heterogeneity in the Everglades landscape and in many tropical landscapes. Only slight differences in elevation due to peat accumulation allow the differentiation of these systems from the adjacent marsh. Hydrologic restoration of the Everglades landscape is currently underway, and increased nutrient supply that could occur with reintroduction of freshwater flow may alter these differentiation processes. In this study, we established a landscape-scale, ecosystem-level experiment to examine litter decomposition responses to increased freshwater flow in nine tree islands and adjacent marsh sites in the southern Everglades. We utilized a standard litterbag technique to quantify changes in mass loss, decay rates, and phosphorus (P), nitrogen (N) and carbon (C) dynamics of a common litter type, cocoplum (Chrysobalanus icaco L.) leaf litter over 64 weeks. Average C. icaco leaf degradation rates in tree islands were among the lowest reported for wetland ecosystems (0.23 ± 0.03 yr−1). We found lower mass loss and decay rates but higher absolute mass C, N, and P in tree islands as compared to marsh ecosystems after 64 weeks. With increased freshwater flow, we found generally greater mass loss and significantly higher P concentrations in decomposing leaf litter of tree island and marsh sites. Overall, litter accumulated N and P when decomposing in tree islands, and released P when decomposing in the marsh. However, under conditions of increased freshwater flow, tree islands accumulated more P while the marsh accumulated P rather than mineralizing P. In tree islands, water level explained significant variation in P concentration and N:P molar ratio in leaf tissue. Absolute P mass increased strongly with total P load in tree islands (r 2 = 0.81). In the marsh, we found strong, positive relationships with flow rate. Simultaneous C and P accumulation in tree island and mineralization in adjacent marsh ecosystems via leaf litter decomposition promotes landscape differentiation in this oligotrophic Everglades wetland. However, results of this study suggest that variation in flow rates, water levels and TP loads can shift differential P accumulation and loss leading to unidirectional processes among heterogeneous wetland ecosystems. Under sustained high P loading that could occur with increased freshwater flow, tree islands may shift to litter mineralization, further degrading landscape heterogeneity in this system, and signaling an altered ecosystem state.  相似文献   

17.
With ecosystems increasingly supporting multiple invasive species, interactions among invaders could magnify or ameliorate the undesired consequences for native communities and ecosystems. We evaluated the individual and combined effects of rusty crayfish (Orconectes rusticus) and Chinese mystery snails [Bellamya (=Cipangopaludina) chinensis] on native snail communities (Physa, Helisoma and Lymnaea sp.) and ecosystem attributes (algal chlorophyll a and nutrient concentrations). Both invaders are widespread in the USA and commonly co-occur within northern temperate lakes, underscoring the importance of understanding their singular and joint effects. An outdoor mesocosm experiment revealed that while the two invaders had only weakly negative effects upon one another, both negatively affected the abundance and biomass of native snails, and their combined presence drove one native species to extinction and reduced a second by >95%. Owing to its larger size and thicker shell, adult Bellamya were protected from crayfish attack relative to native species (especially Physa and Lymnaea), suggesting the co-occurrence of these invaders in nature could have elevated consequences for native communities. The per capita impacts of Orconectes (a snail predator) on native snails were substantially greater than those of Bellamya (a snail competitor). Crayfish predation also had a cascading effect by reducing native snail biomass, leading to increased periphyton growth. Bellamya, in contrast, reduced periphyton biomass, likely causing a reduction in growth by native lymnaeid snails. Bellamya also increased water column N:P ratio, possibly because of a low P excretion rate relative to native snail species. Together, these findings highlight the importance of understanding interactions among invasive species, which can have significant community- and ecosystem-level effects.  相似文献   

18.
The cause of mollusk decline on the Ogasawara Islands   总被引:2,自引:1,他引:1  
Decline of land snails on the Ogasawara Islands was studied. In Hahajima, major alien predators such as Euglandina rosea and Platydemus manokwari are not present, but some small endemic snails, for example, Hirasea spp. and Ogasawarana spp., are already rare and more common endemic snails, for example, Mandarina spp., are also declining in the northern mountains. The decline cannot be directly explained by forest deforestation and by its subsequent regeneration. Three species of flatworms were found to eat small snails under captive conditions. The distribution of these flatworms is restricted to the northern mountains of Hahajima where Mandarina is declining and its survival is low. These predators are plausible candidates as a cause of the decline of the endemic snails.  相似文献   

19.
We compared shell colour forms in the land snail Cepaea nemoralis at 16 sites in a 7 × 8 km section of the Province of Groningen, the Netherlands, between 1967 and 2010. To do so, we used stored samples in a natural history collection and resampled the exact collection localities. We found that almost all populations had experienced considerable evolutionary change in various phenotypes, possibly due to population bottlenecks and habitat change after repeated land consolidation schemes in the area. More importantly, we found a consistent increase in yellow effectively unbanded snails at the expense of brown snails. This is one of the expected adaptations to climate change (this area of the Netherlands has warmed by 1.5–2.0 °C over the time period spanned by the two sampling years), and the first clear demonstration of this in C. nemoralis.  相似文献   

20.
Aim Local‐scale diversity patterns are not necessarily regulated by contemporary processes, but may be the result of historical events such as habitat changes and selective extinctions that occurred in the past. We test this hypothesis by examining species‐richness patterns of the land snail fauna on an oceanic island where forest was once destroyed but subsequently recovered. Location Hahajima Island of the Ogasawara Islands in the western Pacific. Methods Species richness of land snails was examined in 217 0.25 × 0.25 km squares during 1990–91 and 2005–07. Associations of species richness with elevation, current habitat quality (proportion of habitat composed of indigenous trees and uncultivated areas), number of alien snail species, and proportion of forest loss before 1945 in each area were examined using a randomization test and simultaneous autoregressive (SAR) models. Extinctions in each area and on the entire island were detected by comparing 2005–07 records with 1990–91 records and previously published records from surveys in 1987–91 and 1901–07. The association of species extinction with snail ecotype and the above environmental factors was examined using a spatial generalized linear mixed model (GLMM). Results The level of habitat loss before 1945 explained the greatest proportion of variation in the geographical patterns of species richness. Current species richness was positively correlated with elevation in the arboreal species, whereas it was negatively correlated with elevation in the ground‐dwelling species. However, no or a positive correlation was found between elevation and richness of the ground‐dwelling species in 1987–91. The change of the association with elevation in the ground‐dwelling species was caused by greater recent extinction at higher elevation, possibly as a result of predation by malacophagous flatworms. In contrast, very minor extinction levels have occurred in arboreal species since 1987–91, and their original patterns have remained unaltered, mainly because flatworms do not climb trees. Main conclusions The species‐richness patterns of the land snails on Hahajima Island are mosaics shaped by extinction resulting from habitat loss more than 60 years ago, recent selective extinction, and original faunal patterns. The effects of habitat destruction have remained long after habitat recovery. Different factors have operated during different periods and at different time‐scales. These findings suggest that historical processes should be taken into account when considering local‐scale diversity patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号