首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
转基因植物中标记基因的剔除   总被引:5,自引:0,他引:5  
在目前的植物转化系统中,要求在关注基因或目的基因转入细胞时,同时有标记基因存在.标记基因主要是抗生素或除草剂的抗性基因.借标记基因的表达可以将转化细胞从大量的未转化细胞中筛选出来,但标记基因的继续存在,特别是在转基因食品中,是人们广泛关注的问题.培育无标记基因的转基因植株已成为植物生物工程研究中的新课题.该文介绍了剔除标记基因的两种方法:分离剔除和重组剔除,并对近年来这两种方法在培育无标记基因的转基因植物中的应用和进展作了介绍.  相似文献   

2.
A selectable marker gene facilitates the detection of genetically modified plant cells during transformation experiments. So far, these marker genes are almost exclusively of two types, conferring either antibiotic resistance or herbicide tolerance. However, more selectable markers must be developed as additional transgenic traits continue to be incorporated into transgenic plants. Here, we used mercury resistance, conferred by the organomercurial lyase gene, as a selectable marker for transformation. The merB gene fromStreptococcus aureus was modified for plant expression and transferred to a hybrid poplar(Populus alba xPopulus glandulosa), using the stem segment-agrobacteria co-cultivation method. The transformed cells were selected on a callus-inducing medium containing as little as 1 μM methylmercury. Subsequent plant regeneration was done in the presence of methylmercury. Resistance to Hg was stably maintained in mature plants after two years of growth in the nursery. We suggest that this gene could serve as an excellent selectable marker for plant transformation.  相似文献   

3.
Advances in selectable marker genes for plant transformation   总被引:1,自引:0,他引:1  
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants.  相似文献   

4.
Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.  相似文献   

5.
Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time‐consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co‐introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic‐resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high‐throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant‐specific DNA herbicides.  相似文献   

6.
Selectable marker gene systems are vital for the development of transgenic crops. Since the creation of the first transgenic plants in the early 1980s and their subsequent commercialization worldwide over almost an entire decade, antibiotic and herbicide resistance selectable marker gene systems have been an integral feature of plant genetic modification. Without them, creating transgenic crops is not feasible on purely economic and practical terms. These systems allow the relatively straightforward identification and selection of plants that have stably incorporated not only the marker genes but also genes of interest, for example herbicide tolerance and pest resistance. Bacterial antibiotic resistance genes are also crucial in molecular biology manipulations in the laboratory. An unprecedented debate has accompanied the development and commercialization of transgenic crops. Divergent policies and their implementation in the European Union on one hand and the rest of the world on the other (industrialized and developing countries alike), have resulted in disputes with serious consequences on agricultural policy, world trade and food security. A lot of research effort has been directed towards the development of marker-free transformation or systems to remove selectable markers. Such research has been in a large part motivated by perceived problems with antibiotic resistance selectable markers; however, it is not justified from a safety point of view. The aim of this review is to discuss in some detail the currently available scientific evidence that overwhelmingly argues for the safety of these marker gene systems. Our conclusion, supported by numerous studies, most of which are commissioned by some of the very parties that have taken a position against the use of antibiotic selectable marker gene systems, is that there is no scientific basis to argue against the use and presence of selectable marker genes as a class in transgenic plants.  相似文献   

7.
The presence of resistant selectable marker genes and other added DNAs such as the vector backbone sequence in transgenic plant might be an unpredictable hazard to the ecosystem as well as to human health, which have affected the safe assessment of transgenic plants seriously. Using minimal gene expression cassette (containing the promoter, coding region, and terminator) without vector backbone sequence for particle bombardment is the new trend of plant genetic transformation. In the present paper, we co-transformed the selectable marker bar gene cassette and non-selected cecropinB gene cassette into rice (Oryza sativa L.) by particle bombardment, then eliminated the selectable marker bar gene in R1 generation applying the hereditary segregation strategy and attained two safe transgenic plants only harboring cecropinB gene cassettes without any superfluous DNA. This is the fist report indicating that the combination of minimal gene cassettes transformation with the co-transformation and segregation strategy can generate selectable marker-free transgenic plants, which will promote the advancement in plant genetic engineering greatly.  相似文献   

8.
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.  相似文献   

9.
转基因植物中筛选标记基因的利用及消除   总被引:7,自引:0,他引:7  
侯爱菊  朱延明  张晶  李杰  张彬彬 《遗传》2003,25(4):466-470
在基因转移过程中,人们常常使用标记基因来筛选转化细胞或组织。常用的筛选标记基因尤其是抗生素抗性基因的使用往往对环境及植物体的生长发育产生不良影响,且影响基因多重转化。为了消除这些弊端,一种全新的发展策略即获取无选择标记的转基因植物应运而生。本文主要综述转基因植物中有关筛选标记基因及其消除方法。 Abstract:Selective marker gene is usually used to select transformed cells or tissue during gene transfer.However,the use of selective marker gene,especially antibiotic-resistant gene,is harmful to environment,plant development and affects multi-transformation.A new strategy that offers a approach for the elimination of those disadvantages caused by the selectable marker gene is developed.We summarized correlative marker genes used in transgenic plants and some methods of its removal.  相似文献   

10.
It is generally thought that transformation of plant cells using Agrobacterium tumefaciens occurs at a very low frequency. Therefore, selection marker genes are used to identify the rare plants that have taken up foreign DNA. Genes encoding antibiotic and herbicide resistance are widely used for this purpose in plant transformation. Over the past several years, consumer and environmental groups have expressed concern about the use of antibiotic- and herbicide-resistance genes from an ecological and food safety perspective. Although no scientific basis has been determined for these concerns, generating marker-free plants would certainly contribute to the public acceptance of transgenic crops. Several methods have been reported to create marker gene-free transformed plants, for example co-transformation, transposable elements, site-specific recombination, or intrachromosomal recombination. Not only are most of these systems time-consuming and inefficient, but they are also employed on the assumption that isolation of transformants without a selective marker gene is not feasible. Here we present a method that permits the identification of transgenic plants without the use of selectable markers. This strategy relies on the transformation of tissue explants or cells with a virulent A. tumefaciens strain and selection of transformed cells or shoots after PCR analysis. Incubation of potato explants with A. tumefaciens strain AGL0 resulted in transformed shoots at an efficiency of 1-5% of the harvested shoots, depending on the potato genotype used. Because this system does not require genetic segregation or site-specific DNA-deletion systems to remove marker genes, it may provide a reliable and efficient tool for generating transgenic plants for commercial use, especially in vegetatively propagated species like potato and cassava.  相似文献   

11.
Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation for selecting the primary transgenic events. However, these become redundant once the transgenic plants have been developed and identified. Although, there is no evidence that the selectable marker genes are unsafe for consumers and the environment, it would be desirable if the marker genes can be eliminated from the final transgenic events. The availability of efficient transformation methods can enable the possibility of developing transgenic events that are devoid of the marker gene/s upfront. Taking advantage of the high and consistent transformation potential of peanut, we report a technique for developing its transgenics without the use of any selectable marker gene. Marker-free binary vectors harboring either the phytoene synthase gene from maize (Zmpsy1) or the chitinase gene from rice (Rchit) were constructed and used for Agrobacterium tumefaciens-mediated transformation of peanut. The putative transgenic events growing in vitro were initially identified by PCR and further confirmed for gene integration and expression by dot blots assays, Southern blots, and RT-PCR where they showed a transformation frequency of over 75%. This system is simple, efficient, rapid, and does not require the complex segregation steps and analysis for selection of the transgenic events. This approach for generation of marker-free transgenic plants minimizes the risk of introducing unwanted genetic changes, allows stacking of multiple genes and can be applicable to other plant species that have high shoot regeneration efficiencies.  相似文献   

12.
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfpnptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hptcre除去。  相似文献   

13.
Plant transformation is an important tool for basic research and agricultural biotechnology. In most cases, selection of putative transformants is based on antibiotic or herbicide resistance. Overexpression of plant genes that provide protection from abiotic or biotic stresses can result in a conferred phenotype that can be used as a means for selection. We have demonstrated herein that specific methionine sulfoxide reductase B (MsrB) genes that are overexpressed in transgenic plants may constitute a new selectable marker with concomitantly increased tolerance to methyl viologen (MV) treatment. Arabidopsis transformants overexpressing cytosolic MsrB7, MsrB8 or MsrB9 are viable and survive after MV selection. To establish whether these native plant origin genes serve as new non-antibiotic markers that can be applied to crop transformation, tomato cotyledons were used as transformation materials. MsrB7 transgenic tomato plants were successfully obtained by Agrobacterium-mediated transformation and selection on medium supplemented with MV. We suggest that specific MsrB genes that are overexpressed in transgenic plants may constitute a new selectable marker with increased tolerance to oxidative stress concomitant with MV treatment.  相似文献   

14.
Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are used. Many of the genes have specific limitations or have not been sufficiently tested to merit their widespread use. For research, a variety of selection systems are essential as no single selectable marker gene was found to be sufficient for all circumstances. Although, no adverse biosafety effects have been reported for the marker genes that have been adopted for widespread use, biosafety concerns should help direct which markers will be chosen for future crop development. Common sense dictates that marker genes conferring resistance to significant therapeutic antibiotics should not be used. An area of research that is growing rapidly but is still in its infancy is the development of strategies for eliminating selectable marker genes to generate marker-free plants. Among the several technologies described, two have emerged with significant potential. The simplest is the co-transformation of genes of interest with selectable marker genes followed by the segregation of the separate genes through conventional genetics. The more complicated strategy is the use of site-specific recombinases, under the control of inducible promoters, to excise the marker genes and excision machinery from the transgenic plant after selection has been achieved. In this review each of the genes and processes will be examined to assess the alternatives that exist for producing transgenic plants.  相似文献   

15.
A method for Agrobacterium-mediated co-transformation of rice (Oryza sativa L.) was developed using rice-derived selection markers. Two T-DNAs were efficiently introduced into separate loci using selectable marker gene cassettes consisting of the mutated acetolactate synthase gene (mALS) under the control of the callus-specific promoter (CSP) (CSP:mALS) and the ferredoxin nitrite reductase gene (NiR) under the control of its own promoter (NiR P:NiR). The CSP:mALS gene cassette confers sulfonylurea herbicide resistance to transgenic rice callus. The NiR P:NiR construct complements NiR-deficient mutant cultivars such as ‘Koshihikari’, which are defective in the regulation of nitrogen metabolism. In the present study, the CaMV35S:GUS and CaMV35S:GFP gene cassettes were co-introduced into the ‘Koshihikari’ genome using our system. Approximately 5–10 independent transgenic lines expressing both the GUS and GFP reporters were obtained from 100 Agrobacterium co-inoculated calli. Furthermore, transgenic ‘Koshihikari’ rice lines with reduced content of two major seed allergen proteins, the 33 and 14–16?kDa allergens, were generated by this co-transformation system. The present results indicate that the generation of selectable antibiotic resistance marker gene-free transgenic rice is possible using our rice-derived selection marker co-transformation system. Key message An improved rice transformation method was developed based on Agrobacterium-mediated co-transformation using two rice genome-derived selectable marker gene cassettes.  相似文献   

16.
《Plant science》1986,46(3):195-206
The tumour-inducing T-DNA genes 1, 2 and 4 of the octopine Ti-plasmid pTiAch5 were cloned and introduced into tobacco cells by cocultivation or leaf disk transformation using pTi derived vectors. When a selectable marker was needed, we used a aminoglycoside phosphotransferase II (nos-APH(3′)II) chimeric gene conferring kanamycin resistance to plant cells. The expression of gene 4 in transformed tissue cultures precluded the regeneration of normal transformed plants. Normal transformed plants were obtained with the construction carrying genes 1 or 2. We report in vivo complementation of genes 1 and 2 after crosses of transformed plants. Strategies are described for the use of genes 1 and 2 as selection or screening markers in plant cells or regenerated plants.  相似文献   

17.

Key message

This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops.

Abstract

Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~?97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
  相似文献   

18.
Wang Y  Chen B  Hu Y  Li J  Lin Z 《Transgenic research》2005,14(5):605-614
In a plant transformation process, it is necessary to use marker genes that allow the selection of regenerated transgenic plants. However, selectable marker genes are generally superfluous once an intact transgenic plant has been established. Furthermore, they may cause regulatory difficulties for approving transgenic crop release and commercialization. We constructed a binary expression vector with the Cre/lox system with a view to eliminating a marker gene from transgenic plants conveniently. In the vector, recombinase gene cre under the control of heat shock promoter and selectable marker gene nptII under the control of CaMV35S promoter were placed between two lox P sites in direct orientation, while the gene of interest was inserted outside of the lox P sites. By using this vector, both cre and nptII genes were eliminated from most of the regenerated plants of primary transformed tobacco through heat shock treatment, while the gene of interest was retained and stably inherited. This autoexcision strategy, mediated by the Cre/lox system and subjected to heat shock treatment to eliminate a selectable marker gene, is easy to adopt and provides a promising approach to generate marker-free transgenic plants.  相似文献   

19.
Efficiency of plant transformation is less than optimal for many important species, especially for monocots which are traditionally recalcitrant to transformation, such as wheat. And due to limited number of selectable marker genes, identification or selection of those cells that have integrated DNA into appropriate plant genome and to regenerate fully developed plants from the transformed cells, becomes even more difficult. Some of the widely used marker genes belong to the categories of herbicide or antibiotic resistance genes and flourescent protein genes. As they become an integral part of plant genome along with promoters prokaryotic or eukaryotic origin, there are certain health and environmental concerns about the use of these reporter genes. These marker genes are also inefficient with respect to time and space. In this study we have found a novel visible selection agent AtMYB12, to screen transgenic wheat, with in days after transformation. Transformed coleoptiles as well as cells regenerating from transformed cultured scutella, phenotypically exhibit purple pigmentation, making selection possible in limited and reasonable cost, time and space.  相似文献   

20.
The development of selectable markers for transformation has been a major factor in the successful genetic manipulation of plants. A new selectable marker system has been developed based on bacterial gentamicin-3-N-acetyltransferases [AAC(3)]. These enzymes inactivate aminoglycoside antibiotics by acetylation. Two examples of AAC(3) enzymes have been manipulated to be expressed in plants. Chimeric AAC(3)-III and AAC(3)-IV genes were assembled using the constitutively expressed cauliflower mosaic virus 35S promoter and the nopaline synthase 3′ nontranslated region. These chimeric genes were engineered into vectors for Agrobacterium-mediated plant transformation. Petunia hybrida and Arabidopsis thaliana tissue transformed with these vectors grew in the presence of normally lethal levels of gentamicin. The transformed nature of regenerated Arabidopsis plants was confirmed by DNA hybridization analysis and inheritance of the selectable phenotype in progeny. The chimeric AAC(3)-IV gene has also been used to select transformants in several additional plant species. These results show that the bacterial AAC(3) genes will serve as useful selectable markers in plant tissue culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号