首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent report showed that analysis of CD154 expression in the presence of the secretion inhibitor Brefeldin A (Bref A) could be used to assess the entire repertoire of antigen-specific CD4(+) T helper cells. However, the capacity of intracellular CD154 expression to identify antigen-specific CD8(+) T cells has yet to be investigated. In this study, we compared the ability of intracellular CD154 expression to assess antigen-specific CD8(+) T cells with that of accepted standard assays, namely intracellular cytokine IFN-gamma staining (ICS) and MHC class I tetramer staining. The detection of intracellular CD154 molecules in the presence of Bref A reflected the kinetic trend of antigen-specific CD8+ T cell number, but unfortunately showed less sensitivity than ICS and tetramer staining. However, ICS levels peaked and saturated 8 h after antigenic stimulation in the presence of Bref A and then declined, whereas intracellular CD154 expression peaked by 8 h and maintained the saturated level up to 24 h post-stimulation. Moreover, intracellular CD154 expression in antigen-specific CD8+ T cells developed in the absence of CD4(+) T cells changed little, whereas the number of IFN-gamma-producing CD8(+) T cells decreased abruptly. These results suggest that intracellular CD154 could aid the assessment of antigen-specific CD8(+) T cells, but does not have as much ability to identify heterogeneous CD4(+) T helper cells. Therefore, the combined analytical techniques of ICS and tetramer staining together with intracellular CD154 assays may be able to provide useful information on the accurate phenotype and functionality of antigen-specific CD8(+) T cells.  相似文献   

2.
The direct assessment of T helper (T(H))-cell responses specific for antigens is essential to evaluate pathogenic and protective immunity. Presently, analysis and isolation of antigen-specific T(H) cells is restricted to cells that produce cytokines, or can be performed only with a rare selection of specific peptide major histocompatibility complex class II (MHC II) multimers. Here we report a new method that enables the assessment and isolation of T(H) cells specific for a defined antigen according to CD154 expression induced after stimulation in vitro. We show that antigen-induced CD154 expression is highly sensitive and specific for human and mouse antigen-specific T(H) cells. Moreover, the isolation of antigen-specific CD154(+) T(H) cells necessitates only surface staining with antibodies, thereby enabling the fast generation of antigen-specific T(H) cell lines. Our approach allows assessment of T(H) cells with a defined specificity for the combined quantitative and qualitative analysis of T(H)-cell immunity as well as for the isolation of specific T(H) cells for targeted cellular immunotherapies.  相似文献   

3.
CD40-CD154 interaction is pivotal for cell-mediated immunity. There are contradictory reports on whether HIV-1 infection impairs CD154 induction. The interaction between CD40 and CD154 is important not only because it results in activation of APCs but also because it controls CD154 by diminishing expression of this molecule. Compared with healthy controls, CD4(+) T cells from HIV-1(+) patients had impaired induction of CD154 when T cell activation was mediated by CD40(+) APCs. In contrast, T cell activation in the absence of these cells resulted in normal CD154 expression. CD154 induction in HIV-1(+) patients and controls were similar upon blockade of CD40-CD154 binding. Defective regulation of CD154 appeared to occur downstream of the control of mRNA levels because up-regulation of CD154 mRNA was not impaired by HIV-1 infection. This work identifies CD40 as a mediator of impaired CD154 induction in HIV-1 infection and explains why this defect was not detected by studies where T cell activation was triggered independently of CD40(+) APCs. In addition, dysregulation of CD154 in HIV-1 infection likely contributes to immunodeficiency because diminished expression of CD154 induced by CD40 is of functional relevance, resulting in decreased dendritic cell maturation.  相似文献   

4.
A number of antigen-presenting cells (APCs) expressing major histocompatibility complex class II (MHC-II) have been identified in healthy human skin including the Langerhans cells of the epidermis and the three recently defined dermal APC subsets. It is well documented that in other tissues HLA-DR expression is not exclusive to APCs. Following a comprehensive analysis of the cells in human skin using flow cytometry and fluorescence immunohistochemistry, we have identified additional cell subsets that express HLA-DR. Using markers exclusive for blood and lymphatic endothelium, we demonstrated that both of these cell populations have the capacity to express HLA-DR. In addition, a small subset of dermal T lymphocytes was found to express low-level HLA-DR suggesting an activated phenotype. Dermal T lymphocytes were often in intimate contact with either CD1a(+) CD207(-) dermal APCs or CD1a(+) CD207(+) dermal Langerhans cells, possibly explaining the activated phenotype of a subset of dermal T lymphocytes.  相似文献   

5.
CD4(+)CD25(+) regulatory T cells (CD25(+) Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4(+)CD25(+) T cells and virus-specific effector T-cell dysfunction, we asked if CD4(+)CD25(+) T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3(+) Tregs that are phenotypically and functionally indistinguishable from FoxP3(+) Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3(+) Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor beta contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3(+) Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.  相似文献   

6.
Li L  Qiao D  Fu X  Lao S  Zhang X  Wu C 《PloS one》2011,6(5):e20165
Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4(+) T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4(+)CD40L(+) but not CD4(+)CD40L(-) T cells express IFN-γ, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4(+)CD40L(+) T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-γ, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA(-)CD45RO(+)CCR7(-)CD62L(-)ICOS(-)). To determine the specificity of CD4(+)CD40L(+) T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4(+)CD40L(+) and CD4(+)CD40L(-) T cells by flow cytometry. We further demonstrated that sorted CD4(+)CD40L(+), but not CD4(+)CD40L(-) fractions, principally produced IFN-γ, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4(+) T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB.  相似文献   

7.
8.
During infection with lymphocytic choriomeningitis virus, CD8(+) T cells differentiate rapidly into effectors (CD62L(low)CD44(high)) that differentiate further into the central memory phenotype (CD62L(high)CD44(high)) gradually. To evaluate whether this CD8(+) T cell differentiation program operates in all infection models, we evaluated CD8(+) T cell differentiation during infection of mice with recombinant intracellular bacteria, Listeria monocytogenes (LM) and Mycobacterium bovis (BCG), expressing OVA. We report that CD8(+) T cells primed during infection with the attenuated pathogen BCG-OVA differentiated primarily into the central subset that correlated to reduced attrition of the primed cells subsequently. CD8(+) T cells induced by LM-OVA also differentiated into central phenotype cells first, but the cells rapidly converted into effectors in contrast to BCG-OVA. Memory CD8(+) T cells induced by both LM-OVA as well as BCG-OVA were functional in that they produced cytokines and proliferated extensively in response to antigenic stimulation after adoptive transfer. During LM-OVA infection, if CD8(+) T cells were guided to compete for access to APCs, then they received reduced stimulation that was associated with increased differentiation into the central subset and reduced attrition subsequently. Similar effect was observed when CD8(+) T cells encountered APCs selectively during the waning phase of LM-OVA infection. Taken together, our results indicate that the potency of the pathogen can influence the differentiation and fate of CD8(+) T cells enormously, and the extent of attrition of primed CD8(+) T cells correlates inversely to the early differentiation of CD8(+) T cells primarily into the central CD8(+) T cell subset.  相似文献   

9.
The mechanisms through which Schistosoma mansoni larvae induce Th1 rather than Th2 immune responses are not well understood. In this study, using CD154-/- mice exposed to radiation-attenuated S. mansoni larvae, we demonstrate roles for CD154/CD40 in the activation of skin-derived APCs and the development of Th1 cells in the skin-draining lymph nodes (sdLN). The presence of CD154 was important for optimal IL-12p40 and essential for Ag-specific IFN-gamma, but CD154 expression by wild-type CD4- cells was insufficient to rescue recall responses of CD4+ cells from CD154-/- mice. This defect is probably due to impaired CD40-dependent IL-12 production in vivo, because administration of anti-CD40 Ab, or rIL-12, restored IFN-gamma production by sdLN cells from CD154-/- mice. CD154 ligation of CD40 was not required for the migration of skin-derived APCs, but did have a limited role in their maturation (increased MHC II and CD86). Unexpectedly, although CD4 cells from CD154-/- mice were deficient in their ability to produce IFN-gamma, they produced significant amounts of IL-4 and IL-5 in the presence of skin-derived APCs from wild-type and CD154-/- mice. Thus, in contrast to IFN-gamma, the production of Th2-associated cytokines is (in this model) independent of CD154. We conclude that whereas the priming of Th1 responses soon after exposure to schistosome larvae is completely CD40/CD154 dependent, IL-4, IL-5, and IL-13 are independent of CD154, suggesting a dichotomy in the specific mechanisms that induce these cytokines by CD4+ cells in the sdLN.  相似文献   

10.
Human CD8(+) regulatory T cells, particularly the CD8(+)CD28(-) T suppressor cells, have emerged as an important modulator of alloimmunity. Understanding the conditions under which these cells are induced and/or expanded would greatly facilitate their application in future clinical trials. In the current study, we develop a novel strategy that combines common gamma chain (γc) cytokines IL-2, IL-7 and IL-15 and donor antigen presenting cells (APCs) to stimulate full HLA-mismatched allogeneic human CD8(+) T cells which results in significant expansions of donor-specific CD8(+)CD28(-) T suppressor cells in vitro. The expanded CD8(+)CD28(-) T cells exhibit increased expressions of CTLA-4, FoxP3, and CD25, while down-regulate expressions of CD56, CD57, CD127, and perforin. Furthermore, these cells suppress proliferation of CD4(+) T cells in a contact-dependent and cytokine-independent manner. Interestingly, the specificity of suppression is restricted by the donor HLA class I antigens but promiscuous to HLA class II antigens, providing a potential mechanism for linked suppression. Taken together, our results demonstrate a novel role for common γc cytokines in combination with donor APCs in the expansion of donor-specific CD8(+)CD28(-) T suppressor cells, and represent a robust strategy for in vitro generation of such cells for adoptive cellular immunotherapy in transplantation.  相似文献   

11.
Specific patterns of cytokine secretion by CD4(+) T helper (Th) cells determine the nature of immune effector responses. Using a multiparameter, flow cytometric fluorescent in situ hybridization (FISH) assay that detected cytoplasmic mRNA within intact cells, we assessed antigen-specific cytokine expression in rhesus macaque Th cells. In the peripheral lymphocytes of immunized rhesus macaques, FISH detected antigen-induced cytokine gene expression in single Th cells. Analysis of simultaneous cytokine expression by single cells demonstrated that the recall immune response consisted of Th cells expressing either a Th1 (IL-2(+)/IFN-gamma(+)) or a Th2 (IL-4(+)/IL-6(+)) cytokine pattern. In addition to the classic Th subsets, Th cells expressing only one of two Th1 or Th2 defining cytokines were common following antigen restimulation. The data gathered with the FISH assay suggest that, in primates, the immune response to recall antigens consists of nonclassic Th cells, as well as a mixture of polarized Th1 and Th2 T cells.  相似文献   

12.
Two billion people worldwide are estimated to be latently infected with Mycobacterium tuberculosis (Mtb) and are at risk for developing active tuberculosis since Mtb can reactivate to cause TB disease in immune-compromised hosts. Individuals with latent Mtb infection (LTBI) and BCG-vaccinated individuals who are uninfected with Mtb, harbor antigen-specific memory CD4(+) T cells. However, the differences between long-lived memory CD4(+) T cells induced by latent Mtb infection (LTBI) versus BCG vaccination are unclear. In this study, we characterized the immune phenotype and functionality of antigen-specific memory CD4(+) T cells in healthy BCG-vaccinated individuals who were either infected (LTBI) or uninfected (BCG) with Mtb. Individuals were classified into LTBI and BCG groups based on IFN-γ ELISPOT using cell wall antigens and ESAT-6/CFP-10 peptides. We show that LTBI individuals harbored high frequencies of late-stage differentiated (CD45RA(-)CD27(-)) antigen-specific effector memory CD4(+) T cells that expressed PD-1. In contrast, BCG individuals had primarily early-stage (CD45RA(-)CD27(+)) cells with low PD-1 expression. CD27(+) and CD27(-) as well as PD-1(+) and PD-1(-) antigen-specific subsets were polyfunctional, suggesting that loss of CD27 expression and up-regulation of PD-1 did not compromise their capacity to produce IFN-γ, TNF-α and IL-2. PD-1 was preferentially expressed on CD27(-) antigen-specific CD4(+) T cells, indicating that PD-1 is associated with the stage of differentiation. Using statistical models, we determined that CD27 and PD-1 predicted LTBI versus BCG status in healthy individuals and distinguished LTBI individuals from those who had clinically resolved Mtb infection after anti-tuberculosis treatment. This study shows that CD4(+) memory responses induced by latent Mtb infection, BCG vaccination and clinically resolved Mtb infection are immunologically distinct. Our data suggest that differentiation into CD27(-)PD-1(+) subsets in LTBI is driven by Mtb antigenic stimulation in vivo and that CD27 and PD-1 have the potential to improve our ability to evaluate true LTBI status.  相似文献   

13.
Naive CD4(+) T cells differentiate into two types of helper T cells showing an interferon-gamma-predominant (Th1) or an interleukin-4-predominant (Th2) cytokine secretion profile after repeated antigenic stimulation. Their differentiation can be influenced by slight differences in the interaction between the T cell receptor (TCR) and its ligand at the time of primary activation. However, the primary response of freshly isolated naive CD4(+) T cells to altered TCR ligands is still unclear. Here, we investigated the primary response of splenic naive CD4(+) T cells derived from transgenic mice expressing TCR specific for residues 323-339 of ovalbumin (OVA323-339) bound to I-A(d) molecules. Naive CD4(+) T cells secreted either Th1- or Th2-type cytokines immediately after stimulation with OVA323-339 or its single amino acid-substituted analogs. Helper activity for antibody secretion by co-cultured resting B cells was also found in the primary response, accompanied by either low-level Th2-type cytokine secretion or no apparent cytokine secretion. Our results clearly indicate that dichotomy of the Th1/Th2 cytokine secretion profile can be elicited upon primary activation of naive CD4(+) T cells. We also demonstrate that the helper activity of naive CD4(+) T cells for antibody production does not correspond to the amounts of the relevant cytokines secreted.  相似文献   

14.
15.
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previously, it was believed that T cell unresponsiveness induced by immature DC (iDC) is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. In this study, we investigated the in vitro T cell stimulatory capacity of iDC and mature DC (mDC) and found that both DC types induced a significant increase in the number of transforming growth factor (TGF)-beta and interleukin (IL)-10 double-positive CD4(+) T cells within 1 week of autologous DC/T cell co-cultures. In iDC/T cell cultures, where antigen-specific T cell priming was significantly reduced as compared to mDC/T cell cultures, we demonstrated that the tolerogenic effect of iDC was mediated by soluble TGF-beta and IL-10 secreted by CD4(+)CD25(-)FOXP3(-) T cells. In addition, the suppressive capacity of CD4(+) T cells conditioned by iDC was transferable to already primed antigen-specific CD8(+) T cell cultures. In contrast, addition of CD4(+) T cells conditioned by mDC to primed antigen-specific CD8(+) T cells resulted in enhanced CD8(+) T cell responses, notwithstanding the presence of TGF-beta(+)/IL-10(+) T cells in the transferred fraction. In summary, we hypothesize that DC have an active role in inducing immunosuppressive cytokine-secreting regulatory T cells. We show that iDC-conditioned CD4(+) T cells are globally immunosuppressive, while mDC induce globally immunostimulatory CD4(+) T cells. Furthermore, TGF-beta(+)/IL-10(+) T cells are expanded by DC independent of their maturation status, but their suppressive function is dependent on immaturity of DC.  相似文献   

16.
Healthy young children who acquire CMV have prolonged viral shedding into the urine and saliva, but whether this is attributable to limitations in viral-specific immune responses has not been explored. In this study, we found that otherwise immunocompetent young children after recent primary CMV infection accumulated markedly fewer CMV-specific CD4(+) T cells that produced IFN-gamma than did adults. These differences in CD4(+) T cell function persisted for more than 1 year after viral acquisition, and did not apply to CMV-specific IFN-gamma production by CD8(+) T cells. The IFN-gamma-producing CD4(+) T cells of children or adults that were reactive with CMV Ags were mainly the CCR7(low) cell subset of memory (CD45R0(high)CD45RA(low)) cells. The decreased IFN-gamma response to CMV in children was selective, because their CCR7(low) memory CD4(+) T cells and those of adults produced similar levels of this cytokine after stimulation with staphylococcal enterotoxin B superantigen. CD4(+) T cells from children also had reduced CMV-specific IL-2 and CD154 (CD40 ligand) expression, suggesting an early blockade in the differentiation of viral-specific CD4(+) T cells. Following CMV acquisition, children, but not adults, persistently shed virus in urine, and this was observable for at least 29 mo postinfection. Thus, CD4(+) T cell-mediated immunity to CMV in humans is generated in an age-dependent manner, and may have a substantial role in controlling renal viral replication and urinary shedding.  相似文献   

17.
Islet Ag-specific CD4(+) T cells receive antigenic stimulation from MHC class II-expressing APCs. Herein, we delineate the direct in vivo necessity for distinct subsets of macrophages and dendritic cells (DC) in type 1 diabetes mellitus of the NOD mouse by using diphtheria toxin-mediated cell ablation. The ablation of macrophages had no impact on islet Ag presentation or on the induction of insulitis or diabetes in either transfer or spontaneous models. However, the ablation of CD11b(+)CD11c(+) DC led to the loss of T cell activation, insulitis, and diabetes mediated by CD4(+) T cells. When the specific myeloid DC subset was "added-back" to mice lacking total DC, insulitis and diabetes were restored. Interestingly, when NOD mice were allowed to progress to the insulitis phase, the ablation of DC led to accelerated insulitis. This accelerated insulitis was mediated by the loss of plasmacytoid DC (pDC). When pDC were returned to depleted mice, the localized regulation of insulitis was restored. The loss of pDC in the pancreas itself was accompanied by the localized loss of IDO and the acceleration of insulitis. Thus, CD11c(+)CD11b(+) DC and pDC have countervailing actions in NOD diabetes, with myeloid DC providing critical antigenic stimulation to naive CD4(+) T cells and pDC providing regulatory control of CD4(+) T cell function in the target tissue.  相似文献   

18.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

19.
We have recently shown that MHC class II-dependent thymocyte-thymocyte (T-T) interaction successfully generates CD4(+) T cells (T-T CD4(+) T cells), and that T-T CD4(+) T cells expressing promyelocytic leukemia zinc finger protein (PLZF) show an innate property both in mice and humans. In this article, we report that the thymic T-T interaction is essential for the conversion of CD8(+) T cells into innate phenotype in the physiological condition. CD8(+) T cells developed in the presence of PLZF(+) CD4(+) T cells showed marked upregulation of eomesodermin (Eomes), activation/memory phenotype, and rapid production of IFN-γ on ex vivo stimulation. Their development was highly dependent on the PLZF expression in T-T CD4(+) T cells and the IL-4 secreted by PLZF(+) T-T CD4(+) T cells. The same events may take place in humans, as a substantial number of Eomes expressing innate CD8(+) T cells were found in human fetal thymi and spleens. It suggests that PLZF(+) T-T CD4(+) T cells in combination with Eomes(+) CD8(+) T cells might actively participate in the innate immune response against various pathogens, particularly in human perinatal period.  相似文献   

20.
Glucocorticoid-induced tumor necrosis factor receptor (TNFR) (GITR) family-related gene is a member of the TNFR super family. GITR works as one of the immunoregulatory molecule on CD4(+) regulatory T cells and has an important role on cell survival or cell death in CD4(+) T cells. Little is known about the expression of GITR on human CD8(+) T cells on antigen-specific and non-specific activation. Here, we report that expression of GITR on human CD8(+) T cells on T-cell receptor (TCR) (anti-CD3)-mediated stimulation is dependent on the JNK pathway. The activation of CD8(+) T cells was measured by the expression of IL-2 receptor-α (CD25), GITR and by IFN-γ production upon re-stimulation with anti-CD3 antibody. We studied the signaling pathway of such inducible expression of GITR on CD8(+) T cells. We found that a known JNK-specific inhibitor, SP600125, significantly down-regulates GITR expression on anti-CD3 antibody-mediated activated CD8(+) T cells by limiting JNK phosphorylation. Subsequently, after stimulation of the CD8(+) cells, we tested for the production of IFN-γ by the activated cells following restimulation with the same stimulus. It appears that the expression of GITR on activated human CD8(+) T cells might also be regulated through the JNK pathway when the activation is through TCR stimulation. Therefore, GITR serves as an activation marker on activated CD8(+) cells and interference with JNK phosphorylation, partially or completely, by varying the doses of SP600125 might have implications in CD8(+) cytotoxic T cell response in translational research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号