首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
cis,cis-Muconate cycloisomerase (cis,cis-muconate lactonizing enzyme, EC 5.5.1.1.) was purified in crystalline form from Pseudomonas putida. Ultracentrifugation studies, as well as gel filtration chromatography and electrophoresis, indicate that the enzyme is an oligomeric protein of molecular weight 252,000 (s20,w 12.20 × 10?13 s), which is built of six homologous protomers of molecular weight 42,000. Studies of enzyme crystals and enzyme molecules in the electron microscope suggest that the cis,cis-muconate cycloisomerase is a hexamer in which the six protomers are arranged in a dihedral point-group symmetry 32 (D3). Each protomer has a diameter of 42.5Åand six protomers are associated in a structure with a trigonal antiprismatic geometry (a hexamer D3 octahedron). This model could account for the dimensions most frequently observed by negative staining of the enzyme in solution. A model for the three-dimensional structure of enzyme crystals in which each hexameric enzyme molecule is surrounded by eight neighbouring enzyme molecules, is described.  相似文献   

3.
The hemocyanin from the spiny lobster Panulirus interruptus, a hexamer with a molecular weight of approximately 540,000, was crystallized in space group P21 with two molecules in the unit cell and cell dimensions a = 119.8 A?, b = 193.1 A?, c = 122.2 A? and β = 118.1 °. With screened precession photographs a three-dimensional set of reflections was collected up to 10 Å resolution. Both the conventional and the fast rotation function programs were applied and gave results that were in excellent agreement with each other. The hemocyanin hexamer has 32 point group symmetry. Its 3-fold molecular axis runs approximately parallel to the crystallographic 2-fold screw axis.X-ray diffraction data to 5 Å resolution were collected by the oscillation method. Rotation function studies with data between 7 and 5 Å resolution confirmed the 10 Å studies and, furthermore, showed that the rotation axes relating subunits within one hexameric molecule can be distinguished from the rotation axes relating subunits belonging to different hexamers in the unit cell. The local 3-fold axis in the hexamer makes an angle of about 6 ° with the crystallographic 2-fold screw axis.For a mercury and a platinum derivative three-dimensional data sets were collected to 5 Å by the oscillation method. The difference Patterson of the platinum derivative could be solved. The eventual number of heavy-atom sites was 36 for the platinum derivative and 70 for the mercury derivative. From the well-occupied sites the point-group symmetry of the molecule could be established accurately. In addition, the centre of the hexamer could be located within 0.2 Å.Protein phases were obtained from isomorphous as well as anomalous differences. A “best” electron density map calculated with these phases showed the shape of the hexameric molecule as well as the boundaries of the six subunits. Correlation coefficients between the densities of the subunits showed little variation, suggesting a random distribution of the different subunit types (Van Eerd & Folkerts, 1981) over the six positions in the hexamer.The subunits are positioned at the corner of an antiprism. When viewed along the 3-fold axis the hexamer is roughly hexagonal in shape, with a diameter of approximately 120 Å. Viewed along one of the 2-fold axes the molecule is of rectangular shape with dimensions 95 Å × 120 Å. The subunit can be described as an ellipsoid of irregular shape with axes of 80 Å, 55 Å and 48 Å. Each subunit makes extensive contacts with three other subunits in the hexamer and, possibly, a much weaker contact with a fourth subunit.  相似文献   

4.
Native calf thymus DNA was sheared by sonication in a viscous solvent to the molecular-weight range from 3 × 104 to 3 × 105 daltons, and fractionated by gel chromatography. Number and weight average molecular weights (M?n and M?w) were determined for individual fractions by electron microscopy; the ratio M?w/M?n for the peak fraction is approximately 1.1. Sedimentation coefficients (s020,w) of these fractionated samples show an approximately linear dependence on the logarithm of the molecular weight M?w. This behavior is that expected for rodlike molecules, and is in quantitative agreement with the theory of Yamakawa and Fujii [(1973) Macromolecules 6 , 407–415] for the sedimentation coefficient of a wormlike chain with a persistence length of 625 Å, a diameter of 25 Å, and a mass per unit length of 195 daltons/Å. It appears that the wormlike coil model, without excluded volume, can represent the sedimentation behavior of DNA over the entire conformational range from rigid rod to flexible coil, using the above parameters. Equilibrium melting curves were determined for various fractions in aqueous 2.4 M tetraethylammonium bromide. A substantial broadening of the transition and decrease of the melting temperature were observed with decreasing molecular weight. Empirical expressions have been obtained relating both the transition temperature and breadth in this solvent to molecular weight.  相似文献   

5.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   

6.
The Δ5-3-ketosteroid isomerase from Pseudomonas putida biotype B has been crystallized. The crystals belong to the space group P212121 with unit cell dimensions of a = 36.48 Å, b = 74.30 Å, c = 96.02 Å, and contain one homodimer per asymmetric unit. Native diffraction data to 2.19 Å resolution have been obtained from one crystal at room temperature indicating that the crystals are quite suitable for structure determination by multiple isomorphous replacement.  相似文献   

7.
A laboratory-made sample of the polysaccharide xylinan (acetan) has been further characterized with respect to (i) purity, (ii) molar mass and polydispersity, and (iii) gross conformation by a combination of hydrodynamic measurements (sedimentation velocity and equilibrium analytical ultracentrifugation, viscometry, and dynamic light scattering) in aqueous NaCl (I = 0.10 mol·L−1). Sedimentation velocity diagrams recorded using Schlieren optics revealed highly pure material sedimenting as a single boundary [so20.w = 9.5 ± 0.7) S; ks = (273 ± 112) mL/g]. The hypersharp nature of these boundaries is symptomatic of a polydisperse and highly nonideal (in the thermodynamic sense) system. Low speed sedimentation equilibrium in the analytical ultracentrifuge using Rayleigh interference optics and two different types of extrapolation procedure (involving point and whole-cell molar masses) gave a weight average molar mass Mw of (2.5 ± 0.5) × 10−6 g·mol−1 and also a second virial coefficient, B = (2.8 ± 0.7) × 10−4 mL·mol·g−2, both values in good agreement with those from light scattering-based procedures (Part II of this series). A dynamic Zimm plot from dynamic light scattering measurements gave a z-average translational diffusion coefficient Do20.w = (3.02 ± 0.05) × 10−8 cm2·s−1 and the concentration-dependence parameter kD = (370 ± 15) mL/g. Combination of so20.w with Do20.w via the Svedberg equation gave another estimate for Mw of ≅ 2.4 × 106 g/mol, again in good agreement. Both the Wales-van Holde ratio (ks/[η]) ≅ 0.4 (with [η] = (760 ± 77) mL/g) and the ρ-parameter (ratio of the radius of gyration from static light scattering to the hydrodynamic radius from dynamic light scattering) as ρ > 2.0 all indicate an extended conformation for the macromolecules in solution. These findings, plus Rinde-type simulations of the sedimentation equilibrium data are all consistent with the interpretation in terms of a unimodal wormlike coil model performed earlier. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Phospholipid transfer protein from maize seedlings has been crystallized using trisodium citrate as precipitant. The crystal belongs to the orthorhombic space group P212121 with unit cell dimensions of a = 24.46 Å, b = 49.97 Å, and c = 69.99 Å. The presence of one molecule in the asymmetric unit gives a crystal volume per protein mass (Vm) of 2.36 Å 3/Da and a solvent content of 48% by volume. The X-ray diffraction pattern extends at least to 1.6 Å Bragg spacing when exposed to both CuKα and synchrotron X-rays. A set of X-ray data to approximately 1.9 Å Bragg spacing has been collected from a native crystal. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Galactaric acid, C6H10O8, (CAS Reg. No. 526-99-8), is triclinic, P1, with cell dimensions at ?147° [and 20°], a = 4.900(1) [4.918(1)], b = 5.728(1) [5.816(1)], c = 6.784(1) [6.849(1)] Å, α = 92.32(2) [92.31(2)], β = 93.74(2) [94.16(2)], γ = 93.08(2) [93.49(2)]°, V = 189.5 Å3, Z = 1, Dx = 1.831 [1.800], Dm = [1.790] g.cm?3, molecular symmetry I. The structure was solved by the direct method, MULTAN, and refined to R = 0.034, Rw = 0.039 for 787 reflections with FObs > 3σ(Fobs). The crystal structure has a system of strong, intermolecular hydrogen-bonds, which accounts for the high crystal density and low solubility in water.  相似文献   

10.
The thermostable amylopullulanase from Pyrococcus woesei was crystallized. Crystals, suitable for a crystallographic analysis up to a size of 0.6 mm in their longest dimension, have been obtained by the vapor diffusion method in a solution containing polyethyleneglycol 4000 (PEG 4000), isopropanol, and Tris/Cl? buffer pH 7.5. Crystals grown under these conditions form hexagonal rods and diffract to a maximum resolution of 3 Å. The crystals belong to the trigonal lattice type with the spacegroup P3121 or P3221, respectively, have the cell dimensions a = b = 96.8 Å, c = 196.2 Å, α = β = 90°,γ = 120°. The crystals have a theoretical packing density of 2.7 Å3/Da, assuming one molecule with a molecular weight of 88.8 kDa in the asymmetric unit. Furthermore the self-rotation analysis of the dataset revealed only crystallographic symmetries. The merged native data of two crystals resulted in a 88% complete dataset. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The protein actinoxanthin (molecular weight 10,300) crystallizes in space group P212121, with cell dimensions a = 30.9 Å, b = 48.8 Å, c = 64.1 Å, and z = 4. The three-dimensional structure of actinoxanthin at 4-Å resolution was determined by x-ray methods on the basis of experimental data from the native protein and five isomorphous derivatives. At the stage of solving the phase problem, the heavy atoms in the derivatives were located using direct methods. The actinoxanthin molecule can be described as an oblate ellipsoid with approximate dimensions 20 × 30 × 40 Å and consists of two different sizes of folded units separated by a well-defined cleft. The larger unit, including the N- and C-terminals of the protein chain, is characterized by a significant content of β-sheet structure. The smaller unit, containing two deca- and hexapeptide cycles closed by disulfide bonds, has a mainly irregular structure.  相似文献   

12.
We have constructed an apparatus for the simultaneous measurement of electrophoretic mobility, μ, and diffusion coefficient, D, of macromolecules and cells. It combines band electrophoresis in a vertical, sucrose-gradient stabilized column, with quasielastic laser light-scattering determination of the diffusion coefficient of the species within the band. The entire electrophoresis cell is scanned through the laser beam of the quasielastic laser light-scattering apparatus by a vertical translation stage. Total intensity light-scattering measurement at each point in the cell gives the macromolecular concentration at that point. Solvent viscosity and electrical potential are measured at each point in the cell. Application of this apparatus to resealed red blood cell ghosts and to bovine hemoglobin indicates that measurements of field, viscosity, and migration distance are reliable, and that electroosmosis is insignificant. Application to T4D bacteriophage gives μ20,w = (?1.05 ± 0.05) × 10?4 cm2/V sec and D20,w = (3.35 ± 0.10) × 10?8 cm2/sec for fiberless particles, and μ20,w = ?(0.59 ± 0.03) × 10?4 cm2/V sec and D20,w = (2.86 ± 0.09) × 10?8 cm2/sec for whole phage with 6 fibers. Approximate analysis of these results with the Henry electrophoresis theory for spheres in dicates that each fiber contributes about 193 positive charges to the phage particle, compared with 327 from amino-acid analysis. The advantages and disadvantages of this apparatus, relative to conventional electrophoresis and to electrophoretic light scattering, are discussed.  相似文献   

13.
We have used translational diffusion coefficient measurements and subunit hydrodynamic theory to determine the dimensions and shape of bacterioophage T4D baseplates and tails. The diffusion coefficient of the baseplate, measured by quasielastic laser light scattering (QLS), was determined previously by Wagenknecht and Bloomfield to be D = 8.56 × 10?8 cm2/s. For the tail, we found D = 5.88 × 10?8 cm2/s by QLS, and D = 6.02 × 10?8 cm2/s by combining sedimentation coefficient and molecular weight in the Svedberg equation. These values, which have an uncertainty of ±2.7%, when combined with subunit hydrodynamic theory, enabled us to refine estimates of dimensions obtained by electron microscopy. For the hexagonal baseplate, the vertex-to-vertex distance is about 480 Å, the thickness is 160 Å, and there are six extended short fibers 320-Å long and 40 Å in diameter. When a baseplate of these dimensions is attached to a tail tube-sheath-connector complex 1050-Å long and 240 Å in diameter, the calculated D is 5.93 × 10?8 cm2/s, within 1% of experiment. This combined use of electron microscopy and hydrodynamics, using the former to ascertain shape, and the latter to obtain solution dimensions, is a powerful approach to the structure of biomolecular complexes.  相似文献   

14.
A Malvern laser light-scattering instrument has been modified for use at scattering angles down to 5° and both total intensity and quasi-elastic scattering experiments. A sample of sheared, length-fractionated calf-thymus DNA was characterized by sedimentation, viscosity and electron microscopy. Quasi-elastic scattering and absolute intensity determinations were performed with the laser instrument and intensity determinations only with a Fica conventional light-scattering photometer. The total intensity experiments gave M?w = (3.75 ± 0.15) × 106 and 〈R21/2z = (206.9 ± 10.3) nm which yielded a value for the persistence length, allowing for polydispersity, of 66 ± 6nm. The quasi-elastic experiments at scattering angles below 20° gave D020, w = (2.23 ± 0.06) × 10?8 cm2/sec which combined with S020, w = 15.6 in the Svedberg equation gave M?w = (3.73 ± 0.18) × 106. In addition, from the higher angle data we extracted a value of the longest intramolecular relaxation time, τ1 of 17.5 msec. This is not in particularly good agreement with τ1 predicted by the Zimm–Rouse theory using our other experimental parameters. The disagreement may be due to the restricted applicability of the Zimm–Rouse spring-bead model as a quantitative representation of DNA molecules. Alternatively, it may be due to present difficulties in the unambiguous interpretation of molecular motions from the experimental autocorrelation functions.  相似文献   

15.
1,3,8-Trihydroxynaphthalene reductase was crystallized in the presence of NADPH and the inhibitor tricyclazole. The crystals are trigonal, space group P3121 or its enantiomorph P3221. Two crystal forms with slightly different cell dimensions were obtained. Form A has unit cell dimensions a = b = 142.6 Å, c = 70.1 Å and form B cell dimensions a = b = 142.6 Å, c = 72.9 Å. The diffraction pattern of the latter crystal form extends to 2.5 Å resolution.  相似文献   

16.
The translational diffusion coefficient of CF1 at low and high protein concentration as well as at different ionic strength (0.05 – 1.65 M) wsa determined by means of quasi-elastic light scattering experiments. The diffusion coefficient changes from D20,wo = 3.12 × 10?7 cm2 · sec?1 at 0.05 M, pH 7.8, 20°C, to D20,wo = 3.52 × 10?7 cm2 · sec?1 at 1.6 M, pH 7.8, 20°C. At high enzyme concentration (20 mg/ml) and under crystallization conditions (Paradies, BBRC 91: 685, 1979) CF1 behaves as a solution of “true” hard spheres, whereas at low salt concentration the ionic atmosphere has a larger spatial extent, resulting in a higher effective hydrodynamic radius (RH = 65 Å).  相似文献   

17.
An X-ray diffraction study of poly-L-arginine hydrochloride   总被引:2,自引:0,他引:2  
M Suwalsky  W Traub 《Biopolymers》1972,11(3):623-632
An x-ray study has been made of polyarginine hydrochloride to investigate whether, like polylysine hydrochloride, it can undergo conformational changes merely from variations in the degree of hydration. X-ray powder and fiber photographs of specimens containing up to about five molecules of water per arginine residue show features characteristic of α-helical structures including a 5.4-Å layer line and a meridional 1.5-Å reflection. Increasing the water content from 1/2 to 61/2 molecules per residue causes the a axis of the hexagonal unit cell to increase from 14.4 Å to 15.8 Å, with no appreciable change in the 27.0 Å c axis. Removal of the last half molecule of water results in a very diffuse α pattern, but on rehydration the sharp pattern reappears. Specimens containing five to twenty water molecules per residue show quite a different pattern, the spacing of which do not vary appreciably with hydration. This pattern includes a meridional 3.4-Å reflection, a feature commonly shown by β structures, and indeed all the reflections can be satisfactorily indexed in terms of a monoclinic unit cell with a = 9.26 Å, b = 22.05 Å, c = 6.76 Å, and γ = 108.9°. These dimensions are shown by models to be compatible with a β pleated-sheet structure.  相似文献   

18.
The ImmE7 protein, which can bind specifically to the DNase colicin E7 and neutralize its bactericidal activity, has been purified and crystallized in two different crystal forms by vapor diffusion method. The orthorhombic crystals belong to space group I222 or I212121 and have unit cell dimensions a = 75.1 Å, b = 50.5 Å, and c = 45.4 Å. The second form is monoclinic space group P21 with ceil dimensions a = 29.3 Å, b = 102.7 Å, c = 53.0 Å and β = 91.5°. The orthorhombic crystals diffract to 1.8 Å resolution, and are suitable for high-resolution X-ray analysis. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Endoglucanase CelC from Clostridium thermocellum expressed in Escherichia coli has been crystallized in two different crystal forms by the hanging drop method. Crystals of form I were grown with polyethylene glycol as a precipitant. They are orthorhombic, space group P212121, with cell dimensions a =51.4 Å, b =84.3 Å, and c =87.5 Å. Crystals of form II, obtained in ammonium sulfate solutions, belong to the tetragonal space group P41212 (or P43212) with cell dimensions of a = b = 130.7 Å and c = 69.6 Å. Diffraction data to 2.8 Å resolution were observed for both crystal forms with a rotating anode generator. Preliminary oscillation images of the orthorhombic form I crystals using a synchrotron radiation source show diffraction to 2.2 Å resolution, indicating that these crystals are suitable for high resolution crystallographic analysis. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Guy C. Fletcher 《Biopolymers》1976,15(11):2201-2217
Solutions of native collagen extracted from rat tail tendons in neutral salt solution have been studied by dynamic light scattering. The spectra obtained are consistent with the presence in solution of both single rod-shaped collagen molecules and aggregates of molecules. No contribution to the spectrum has been detected at any scattering angle from rotational diffusion of single molecules, although a measurable broadening effect is expected at high angles. The translational diffusion coefficient D of single molecules, calculated from the broader spectral component, shows an anomalous dependence on collagen concentration with a maximum value of D20,w = 8.6 ± 0.2 × 10?12 m2/sec near the concentration 0.04% by weight. Above 0.05% D falls linearly with increasing concentration and takes the value D 20,w = 8.1 ± 0.2 × 10?12 m2/sec at 0.064% collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号