首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li L  Zhao B  Du J  Zhang K  Ling CX  Li SS 《PloS one》2011,6(10):e25528
Protein-protein interactions (PPIs) are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.  相似文献   

2.
3.
Predicting the interactions between all the possible pairs of proteins in a given organism (making a protein-protein interaction map) is a crucial subject in bioinformatics. Most of the previous methods based on supervised machine learning use datasets containing approximately the same number of interacting pairs of proteins (positives) and non-interacting pairs of proteins (negatives) for training a classifier and are estimated to yield a large number of false positives. Thinking that the negatives used in previous studies cannot adequately represent all the negatives that need to be taken into account, we have developed a method based on multiple Support Vector Machines (SVMs) that uses more negatives than positives for predicting interactions between pairs of yeast proteins and pairs of human proteins. We show that the performance of a single SVM improved as we increased the number of negatives used for training and that, if more than one CPU is available, an approach using multiple SVMs is useful not only for improving the performance of classifiers but also for reducing the time required for training them. Our approach can also be applied to assessing the reliability of high-throughput interactions.  相似文献   

4.

Background  

Domains are the basic functional units of proteins. It is believed that protein-protein interactions are realized through domain interactions. Revealing multi-domain cooperation can provide deep insights into the essential mechanism of protein-protein interactions at the domain level and be further exploited to improve the accuracy of protein interaction prediction.  相似文献   

5.
Information assessment on predicting protein-protein interactions   总被引:1,自引:0,他引:1  

Background  

Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information.  相似文献   

6.
Prediction of protein-protein interaction is a difficult and important problem in biology. In this paper, we propose a new method based on an ensemble of K-local hyperplane distance nearest neighbor (HKNN) classifiers, where each HKNN is trained using a different physicochemical property of the amino acids. Moreover, we propose a new encoding technique that combines the amino acid indices together with the 2-Grams amino acid composition. A fusion of HKNN classifiers combined with the 'Sum rule' enables us to obtain an improvement over other state-of-the-art methods. The approach is demonstrated by building a learning system based on experimentally validated protein-protein interactions in human gastric bacterium Helicobacter pylori and in Human dataset.  相似文献   

7.
8.

Background  

Although many genomic features have been used in the prediction of protein-protein interactions (PPIs), frequently only one is used in a computational method. After realizing the limited power in the prediction using only one genomic feature, investigators are now moving toward integration. So far, there have been few integration studies for PPI prediction; one failed to yield appreciable improvement of prediction and the others did not conduct performance comparison. It remains unclear whether an integration of multiple genomic features can improve the PPI prediction and, if it can, how to integrate these features.  相似文献   

9.
Protein-protein interactions are governed by the change in free energy upon binding, ΔG = ΔH - TΔS. These interactions are often marginally stable, so one must examine the balance between the change in enthalpy, ΔH, and the change in entropy, ΔS, when investigating known complexes, characterizing the effects of mutations, or designing optimized variants. To perform a large-scale study into the contribution of conformational entropy to binding free energy, we developed a technique called GOBLIN (Graphical mOdel for BiomoLecular INteractions) that performs physics-based free energy calculations for protein-protein complexes under both side-chain and backbone flexibility. Goblin uses a probabilistic graphical model that exploits conditional independencies in the Boltzmann distribution and employs variational inference techniques that approximate the free energy of binding in only a few minutes. We examined the role of conformational entropy on a benchmark set of more than 700 mutants in eight large, well-studied complexes. Our findings suggest that conformational entropy is important in protein-protein interactions--the root mean square error (RMSE) between calculated and experimentally measured ΔΔGs decreases by 12% when explicit entropic contributions were incorporated. GOBLIN models all atoms of the protein complex and detects changes to the binding entropy along the interface as well as positions distal to the binding interface. Our results also suggest that a variational approach to entropy calculations may be quantitatively more accurate than the knowledge-based approaches used by the well-known programs FOLDX and Rosetta--GOBLIN's RMSEs are 10 and 36% lower than these programs, respectively.  相似文献   

10.
Computational methods for predicting protein-protein interaction sites based on structural data are characterized by an accuracy between 70 and 80%. Some experimental studies indicate that only a fraction of the residues, forming clusters in the center of the interaction site, are energetically important for binding. In addition, the analysis of amino acid composition has shown that residues located in the center of the interaction site can be better discriminated from the residues in other parts of the protein surface. In the present study, we implement a simple method to predict interaction site residues exploiting this fact and show that it achieves a very competitive performance compared to other methods using the same dataset and criteria for performance evaluation (success rate of 82.1%).  相似文献   

11.
Protein-protein interactions (PPIs) are essential to most fundamental cellular processes. There has been increasing interest in reconstructing PPIs networks. However, several critical difficulties exist in obtaining reliable predictions. Noticeably, false positive rates can be as high as >80%. Error correction from each generating source can be both time-consuming and inefficient due to the difficulty of covering the errors from multiple levels of data processing procedures within a single test. We propose a novel Bayesian integration method, deemed nonparametric Bayes ensemble learning (NBEL), to lower the misclassification rate (both false positives and negatives) through automatically up-weighting data sources that are most informative, while down-weighting less informative and biased sources. Extensive studies indicate that NBEL is significantly more robust than the classic naïve Bayes to unreliable, error-prone and contaminated data. On a large human data set our NBEL approach predicts many more PPIs than naïve Bayes. This suggests that previous studies may have large numbers of not only false positives but also false negatives. The validation on two human PPIs datasets having high quality supports our observations. Our experiments demonstrate that it is feasible to predict high-throughput PPIs computationally with substantially reduced false positives and false negatives. The ability of predicting large numbers of PPIs both reliably and automatically may inspire people to use computational approaches to correct data errors in general, and may speed up PPIs prediction with high quality. Such a reliable prediction may provide a solid platform to other studies such as protein functions prediction and roles of PPIs in disease susceptibility.  相似文献   

12.
La D  Kihara D 《Proteins》2012,80(1):126-141
Protein-protein binding events mediate many critical biological functions in the cell. Typically, functionally important sites in proteins can be well identified by considering sequence conservation. However, protein-protein interaction sites exhibit higher sequence variation than other functional regions, such as catalytic sites of enzymes. Consequently, the mutational behavior leading to weak sequence conservation poses significant challenges to the protein-protein interaction site prediction. Here, we present a phylogenetic framework to capture critical sequence variations that favor the selection of residues essential for protein-protein binding. Through the comprehensive analysis of diverse protein families, we show that protein binding interfaces exhibit distinct amino acid substitution as compared with other surface residues. On the basis of this analysis, we have developed a novel method, BindML, which utilizes the substitution models to predict protein-protein binding sites of protein with unknown interacting partners. BindML estimates the likelihood that a phylogenetic tree of a local surface region in a query protein structure follows the substitution patterns of protein binding interface and nonbinding surfaces. BindML is shown to perform well compared to alternative methods for protein binding interface prediction. The methodology developed in this study is very versatile in the sense that it can be generally applied for predicting other types of functional sites, such as DNA, RNA, and membrane binding sites in proteins.  相似文献   

13.
Understanding energetics and mechanism of protein-protein association remains one of the biggest theoretical problems in structural biology. It is assumed that desolvation must play an essential role during the association process, and indeed protein-protein interfaces in obligate complexes have been found to be highly hydrophobic. However, the identification of protein interaction sites from surface analysis of proteins involved in non-obligate protein-protein complexes is more challenging. Here we present Optimal Docking Area (ODA), a new fast and accurate method of analyzing a protein surface in search of areas with favorable energy change when buried upon protein-protein association. The method identifies continuous surface patches with optimal docking desolvation energy based on atomic solvation parameters adjusted for protein-protein docking. The procedure has been validated on the unbound structures of a total of 66 non-homologous proteins involved in non-obligate protein-protein hetero-complexes of known structure. Optimal docking areas with significant low-docking surface energy were found in around half of the proteins. The 'ODA hot spots' detected in X-ray unbound structures were correctly located in the known protein-protein binding sites in 80% of the cases. The role of these low-surface-energy areas during complex formation is discussed. Burial of these regions during protein-protein association may favor the complexed configurations with near-native interfaces but otherwise arbitrary orientations, thus driving the formation of an encounter complex. The patch prediction procedure is freely accessible at http://www.molsoft.com/oda and can be easily scaled up for predictions in structural proteomics.  相似文献   

14.
Liu X  Liu B  Huang Z  Shi T  Chen Y  Zhang J 《PloS one》2012,7(1):e30938

Background

The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology.

Results

We have developed a web-based tool “Sequence-based Protein Partners Search” (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server.

Conclusions

SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.shsmu.edu.cn/SPPS/.  相似文献   

15.
Mining literature for protein-protein interactions   总被引:7,自引:0,他引:7  
MOTIVATION: A central problem in bioinformatics is how to capture information from the vast current scientific literature in a form suitable for analysis by computer. We address the special case of information on protein-protein interactions, and show that the frequencies of words in Medline abstracts can be used to determine whether or not a given paper discusses protein-protein interactions. For those papers determined to discuss this topic, the relevant information can be captured for the Database of Interacting PROTEINS: Furthermore, suitable gene annotations can also be captured. RESULTS: Our Bayesian approach scores Medline abstracts for probability of discussing the topic of interest according to the frequencies of discriminating words found in the abstract. More than 80 discriminating words (e.g. complex, interaction, two-hybrid) were determined from a training set of 260 Medline abstracts corresponding to previously validated entries in the Database of Interacting Proteins. Using these words and a log likelihood scoring function, approximately 2000 Medline abstracts were identified as describing interactions between yeast proteins. This approach now forms the basis for the rapid expansion of the Database of Interacting Proteins.  相似文献   

16.
MOTIVATION: Function annotation of an unclassified protein on the basis of its interaction partners is well documented in the literature. Reliable predictions of interactions from other data sources such as gene expression measurements would provide a useful route to function annotation. We investigate the global relationship of protein-protein interactions with gene expression. This relationship is studied in four evolutionarily diverse species, for which substantial information regarding their interactions and expression is available: human, mouse, yeast and Escherichia coli. RESULTS: In E.coli the expression of interacting pairs is highly correlated in comparison to random pairs, while in the other three species, the correlation of expression of interacting pairs is only slightly stronger than that of random pairs. To strengthen the correlation, we developed a protocol to integrate ortholog information into the interaction and expression datasets. In all four genomes, the likelihood of predicting protein interactions from highly correlated expression data is increased using our protocol. In yeast, for example, the likelihood of predicting a true interaction, when the correlation is > 0.9, increases from 1.4 to 9.4. The improvement demonstrates that protein interactions are reflected in gene expression and the correlation between the two is strengthened by evolution information. The results establish that co-expression of interacting protein pairs is more conserved than that of random ones.  相似文献   

17.
Protein-protein interactions (PPIs) play a critical role in various biological processes. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html  相似文献   

18.
ABSTRACT: BACKGROUND: Identification of essential proteins plays a significant role in understanding minimal requirements for the cellular survival and development. Many computational methods have been proposed for predicting essential proteins by using the topological features of protein-protein interaction (PPI) networks. However, most of these methods ignored intrinsic biological meaning of proteins. Moreover, PPI data contains many false positives and false negatives. To overcome these limitations, recently many research groups have started to focus on identification of essential proteins by integrating PPI networks with other biological information. However, none of their methods has widely been acknowledged. RESULTS: By considering the facts that essential proteins are more evolutionarily conserved than nonessential proteins and essential proteins frequently bind each other, we propose an iteration method for predicting essential proteins by integrating the orthology with PPI networks, named by ION. Differently from other methods, ION identifies essential proteins depending on not only the connections between proteins but also their orthologous properties and features of their neighbors. ION is implemented to predict essential proteins in S. cerevisiae. Experimental results show that ION can achieve higher identification accuracy than eight other existing centrality methods in terms of area under the curve (AUC). Moreover, ION identifies a large amount of essential proteins which have been ignored by eight other existing centrality methods because of their low-connectivity. Many proteins ranked in top 100 by ION are both essential and belong to the complexes with certain biological functions. Furthermore, no matter how many reference organisms were selected, ION outperforms all eight other existing centrality methods. While using as many as possible reference organisms can improve the performance of ION. Additionally, ION also shows good prediction performance in E.Coli K-12. CONCLUSIONS: The accuracy of predicting essential proteins can be improved by integrating the orthology with PPI networks.  相似文献   

19.

Background

Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID), PANTHER, Reactome, I2D, and STRING). We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data.

Results

We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a ??bow tie?? architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NF??B, and apoptotic signaling. Individual pathways exhibit ??fuzzy?? modularity that is statistically significant but still involving a majority of ??cross-talk?? interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless), we find a multiplicity of network topologies in which receptors couple to downstream components through myriad alternate paths. Many of these paths are inconsistent with well-established mechanistic features of signalling networks, such as a requirement for a transmembrane receptor in sensing extracellular ligands.

Conclusions

Wide inconsistencies among interaction databases, pathway annotations, and the numbers and identities of nodes associated with a given pathway pose a major challenge for deriving causal and mechanistic insight from network graphs. We speculate that these inconsistencies are at least partially attributable to cell, and context-specificity of cellular signal transduction, which is largely unaccounted for in available databases, but the absence of standardized vocabularies is an additional confounding factor. As a result of discrepant annotations, it is very difficult to identify biologically meaningful pathways from interactome networks a priori. However, by incorporating prior knowledge, it is possible to successively build out network complexity with high confidence from a simple linear signal transduction scaffold. Such reduced complexity networks appear suitable for use in mechanistic models while being richer and better justified than the simple linear pathways usually depicted in diagrams of signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号