首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunofluorescence and phase-contrast microscopic studies of goldfish xanthophores with aggregated or dispersed pigment show two unusual features. First, immunofluorescence studies with anti-actin show punctate structures instead of filaments. These punctate structures are unique for the xanthophores and are absent from both goldfish dermal non-pigment cells and a dedifferentiated cell line (GEM-81) derived from a goldfish xanthophore tumor. Comparison of immunofluorescence and phase-contrast microscopic images with electron microscopic images of thin sections and of Triton-insoluble cytoskeletons show that these punctate structures represent pterinosomes with radiating F-actin. The high local concentration of actin around the pterinosomes results in strong localized fluorescence such that, when the images have proper brightness for these structures, individual actin filaments elsewhere in the cell are too weak in their fluorescence to be visible in the micrographs. Second, whereas immunofluorescence images with anti-tubulin show typical patterns in xanthophores with either aggregated or dispersed pigment, namely, filaments radiating out from the microtubule organizing center, immunofluorescence images with anti-actin or with anti-intermediate filament proteins show different patterns in xanthophores with aggregated versus dispersed pigment. In cells with dispersed pigment, the punctate structures seen with anti-actin are relatively evenly distributed in the cytoplasm, and intermediate filaments appear usually as a dense perinuclear band and long filaments elsewhere in the cytoplasm. In cells with aggregated pigment, both intermediate filaments and pterinosomes with associated actin are largely excluded from the space occupied by the pigment aggregate, and the band of intermediate filaments surrounds not only the nucleus but also the pigment aggregate. The patterns of distribution of the different cytoskeleton components, together with previous results from this laboratory, indicate that formation of the pigment aggregate depends at least in part on the interaction between pigment organelles and microtubules. The possibility that intermediate filaments may play a role in the formation/stabilization of the pigment aggregate is discussed.  相似文献   

2.
Intracellular actin-containing fibers can be visualized by indirect immunofluorescence microscopy when they are stained with antibody directed against DNase I. The location of actin-containing fibers in cells appears to be similar to the staining pattern of antibody to actin. Actin fibers were also visualized by direct fluorescent microscopy with rhodamine-conjugated DNase I.  相似文献   

3.
An antibody against purified chicken skeletal muscle tropomyosin is used in indirect immunofluorescence to visualize the localization of tropomyosin in a variety of nonmuscle cells. The antibody produces a fluorescent pattern which is very similar to that obtained with an actin-specific antibody. This pattern is composed of fluorescent fibers which are shown to be coincident with the fibers seen with phase- contrast optics. High resolution epifluorescent microscopy reveals that fibers stained with the actin antibody show a continuous fluorescence, while fibers reacted with the tropomyosin antibody show a periodic fluorescence. Measurements indicate that the lengths of the fluorescent segments are variable with an average of 1.2 mum while the spacing between segments is approximately 0.4 mum.  相似文献   

4.
Skeletal muscle F-actin and smooth muscle tropomyosin separately labeled with the fluorescent reporter group 5-iodoacetamidofluorescein (5-IAF) were further purified to yield G-actin fully competent to polymerize and tropomyosin able to bind specifically to F-actin. The two fluorescent proteins (dye content of 0.4–0.5 moles/mole of protein) were microinjected into tissue culture cells and their intracellular distribution was followed by TV image intensification. Fluorescent actin is found in the stress fibers and in the lamellopodia and ruffling edges of the cells. In addition a general cytoplasmic fluorescence is observed as well as fluorescent patches, which could be actin paracrystals. In contrast tropomyosin is not incorporated into ruffles although it is clearly seen along the stress fibers and gives rise to general cytoplasmic fluorescence. Control experiments using fluorescent serum albumin show no specific visualization of either stress fibers or ruffles. The specificity of the incorporation of the fluorescently labeled contractile proteins into the microfilament structures is further documented by the preparation of detergent resistant cytoskeletons which retain actin and tropomyosin in the appropriate structures but are devoid of fluorescent serum albumin. In addition the distribution of the contractile proteins in the living cells is affected by the microfilament specific drugs phalloidin and cytochalasin B (CB). The results obtained on live cells are in excellent agreement with conclusions drawn from immunofluorescence microscopical observations on fixed cells. In addition they directly prove the rather obvious point that contractile proteins are constantly rearranged in tissue culture cells.  相似文献   

5.
PtK2 cells were grown on gold grids and treated with Triton X-100 in a microtubule stabilizing buffer. The resulting cytoskeletons were fixed with glutaraldehyde and subjected to the indirect immunofluorescence procedure using monospecific tubulin antibodies. Grids were examined first by fluorescence microscopy, and the display of fluorescent cytoplasmic microtubules was recorded. The grids were then stained with uranyl acetate and the display of fibrous structures recorded by electron microscopy. Thus the display of cytoplasmic microtubular structures in the light microscope and the electron microscope can be compared within the same cytoskeleton. The results show a direct correspondence of the fluorescent fibers in the light microscope with uninterrupted fibers of diameter approximately 550 A in the electron microscope. This is the diameter reported for a single microtubule decorated around its circumference by two layers of antibody molecules. Thus under optimal conditions immunofluorescence microscopy can visualize individual microtubules.  相似文献   

6.
Ctenophores are non-bilaterian animals sharing with cnidarians and bilaterians the presence of sensory receptors, nerve cells, and synapses, absent in placozoans and sponges. Although recent immunofluorescence studies have renewed our knowledge of cnidarian neuro-anatomy, ctenophores have been much less investigated despite their importance to understanding the origin and early evolution of the nervous system. In this study, the neuro-anatomy of the ctenophore Pleurobrachia pileus (Müller, 1776) was explored by whole-mount fluorescent antibody staining using antibodies against tyrosylated -tubulin, FMRFamide, and vasopressin. We describe the morphology of nerve nets and their local specializations, and the organization of the aboral neuro-sensory complex comprising the apical organ and polar fields. Two distinct nerve nets are distinguished: a mesogleal nerve net, loosely organized throughout body mesoglea, and a much more compact “nerve net” with polygonal meshes in the ectodermal epithelium. The latter is organized as a plexus of short nerve cords. This epithelial nervous system contains distinct sub-populations of dispersed FMRFamide and vasopressin immunoreactive nerve cells. In the aboral neuro-sensory complex, our most significant observations include specialized nerve nets underlying the apical organ and polar fields, a tangential bundle of actin-rich fibers (interpreted as a muscle) within the polar fields, and distinct groups of neurons labeled by anti-FMRFamide and anti-vasopressin antibodies, within the apical organ floor. These results are discussed in a comparative perspective.  相似文献   

7.
Black pigment cells, melanophores, e.g. located in the epidermis and dermis of frogs, are large flat cells having intracellular black pigment granules, called melanosomes. Due to a large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes; e.g. organelle transport and G-protein coupled receptors. The geometry of melanosomes from African clawed toad, Xenopus laevis, has been measured using scanning force microscopy (SFM). Three-dimensional images from SFM were used to measure height, width, and length of the melanosomes (100 from aggregated cells and 100 from dispersed cells). The volumes of melanosomes isolated from aggregated and dispersed melanophores were significantly different (P < 0.05, n=200). The average ellipsoidal volume was 0.14+/-0.01 (aggregated) and 0.17+/-0.01 microm3 (dispersed), a difference of 18%. The average major diameter was 810+/-20 and 880+/-20 nm for aggregated and dispersed melanosomes, respectively. To our knowledge, this is the first time SFM has been used to study melanosomes. This may provide an alternative non-destructive technique that may be particularly suitable for studying morphological aspects of various melanin granules.  相似文献   

8.
Cultured Burkitt cells were examined by immunofluorescence, autoradiography, and electron microscopy in an effort to identify the stainable cells with those harboring herpes-type virus particles. Immediately after a 2-hr pulse of (3)H-thymidine, from 30 to 60% of the cells revealed heavy nuclear labeling. In most cases the grains were evenly dispersed, but in about 3 to 5% the grains showed a focal distribution and occasionally they extended into the cytoplasm. Such nuclear foci were rarely seen at 8 hr after the pulse. When the analysis was restricted to preselected immunofluorescent cells, up to 80% showed label at 8 hr and cytoplasmic grains were prominent. To reduce cellular deoxyribonucleic acid (DNA) synthesis, cells were X-irradiated with 3,000 to 6,000 R, and the isotope pulse was applied 1, 4, or 7 days later. Whereas the total number of labeled cells decreased in roughly twofold steps at the respective intervals (from 40 to 10%), the incorporation of (3)H-thymidine into fluorescent cells was not affected by X irradiation. In each series, about 70% of the fluorescent cells contained label when they were examined at 24 and 48 hr after the pulse, whereas at 8 and 72 hr fewer were positive. At the earlier intervals, unlabeled fluorescent cells most likely represented cells which had completed viral DNA synthesis prior to the pulse; at the later intervals, unlabeled fluorescent cells were probably cells which commenced viral replication after the pulse. These data support the conclusion that the immunofluorescent cells are the ones which harbor virus, and also confirm the expectation that the virus is a DNA virus from a member of the herpes group. This conclusion was firmly established by sectioning and electron microscopic examination of individual fluorescent cells, all of which contained numerous virus particles, whereas the nonstained cells prepared in a similar manner were free of them.  相似文献   

9.
Summary The hypothalamohypophyseal system of the mouse, rat, guinea-pig, cat, dog and monkey (Macaca mulatta) was studied with the fluorescence method for catecholamine-containing neurons developed by Falck et al. (1962). The fluorescent fibers are prominent in the external layer and around the primary portal plexus of the infundibulum and in the peripheral region of the neural lobe of these animals, particulary on the external surface and surrounding the primary capillary loops. These fluorescent fibers are connected with fluorescent cells in the arcuate nuclei, and this connection coincides with the tuberohypophyseal system. The neurons of this system have a particular affinity for dopamine, possibly due to their own content of dopamine. In the supraoptic and paraventricular nuclei, no fluorescent cells were found. In the pars intermedia, we also found catecholamine-containing fibers.The presence of catecholamine-containing fibers in the adeno- and neurohypophysis are considered in relation to other data derived from fluorescence and electron microscopy.  相似文献   

10.
Leucine-enkephalin- and dopamine-like nerve cells and fibers were localized in the supraoesophageal ganglia (brain) of the American cockroach, Periplaneta americana, using immunofluorescence. The presence of leucine-enkephalin-like material was confirmed using immunoperoxidase staining. Several cells containing leucine-enkephalin-like material were found in the pars lateralis, and nerve fibers belonging to these cells were traced through the brain. Dopamine-like material was detected in deutocerebral neurons as well as the nerve processes arising from these cells which lead into the area of the deutocerebral glomeruli. Specific immunofluorescence was also obtained in the alpha and beta lobes of the corpora pedunculata with both the leucine-enkephalin and dopamine antibodies. However, the fluorescent banding pattern observed in both lobes was distinctly different with the two antibodies. No specific fluorescence was observed in the stalk or peduncle of the corpora pedunculata with either the leucine-enkephalin or the dopamine antibody. The findings suggest a possible interaction of leucine-enkephalinergic and dopaminergic nerve fibers in the alpha and beta lobes of the cockroach corpora pedunculata.  相似文献   

11.
Stress fiber reformation after ATP depletion   总被引:1,自引:0,他引:1  
Fluorescently labeled heavy meromyosin, alpha-actinin, and vinculin were used to localize actin, alpha-actinin, and vinculin, respectively, in permeabilized and living cells during the process of stress fiber reassembly, which occurred when cells were removed from ATP-depleting medium (20 mM sodium azide and 10 mM 2-deoxyglucose). In 80% of the cells recovering from ATP depletion, small, scattered plaques containing actin, alpha-actinin, and vinculin were replaced by long, thin, periodic fibers within 5 minutes of removal of the inhibitors. These nascent stress fibers grew broader as recovery progressed, until they attained the thickness of stress fibers in control cells. In the other 20% of the cells, the scattered plaques aggregated within 5 minutes of reversal, and almost all the actin, alpha-actinin, and vinculin in the cells became localized in one perinuclear aggregate, with a diameter of approximately 15-25 micron. As recovery progressed, all aggregates resembled rings, with diameters that increased at about 0.5 micron/minute and grew to as large as 70 micron in some giant cells. As the size of the rings increased, fibers radiated outward from them and sometimes spanned the diameter of the rings. The shape of the cells did not change during this time. By 1 hour after reversal, the rings were no longer present and all cells had networks of stress fibers. Indirect immunofluorescence techniques used to localize tubulin and vimentin indicated that microtubules and intermediate filaments were not constituents of the rings, and the rings were not closely apposed to the substrate, judging from reflection contrast optics. The rapid rearrangement of attachment plaques into a perinuclear aggregate that spreads radially in the cytoplasm occurs at the same speed as fibroblast and chromosomal movement, but is unlike other types of intracytoplasmic motility.  相似文献   

12.
We studied the development of the major extraganglionic components of the germinal plate in embryos of the glossiphoniid leech Helobdella triserialis to improve our understanding of the mechanism of segmental nerve formation. We examined the outgrowth of groups of axons from ganglionic neurons into the segmental nerves, the migration of peripheral neurons and epidermal specializations to their definitive sites, and the development of circular and longitudinal muscle fibers. We visualized axons, as well as neurons and epidermal specializations, by means of fluorescent cell lineage tracers injected earlier into blastomeres and muscle fibers by means of immunofluorescence. The development of cells in all groups was found to follow a stereotyped pattern. Axons of ganglionic neurons approach some identified peripheral neurons located along the segmental nerve paths but not, in general, epidermal specializations and muscle fibers. Near the somata of a subset of peripheral neurons they approach, axons cease or interrupt their growth. These findings identify a set of candidate guidance cells for axonal outgrowth in the leech, similar to those previously described in the developing nervous system of insects.  相似文献   

13.
Black pigment cells, melanophores, e.g. located in the epidermis and dermis of frogs, are large flat cells having intracellular black pigment granules, called melanosomes. Due to a large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes; e.g. organelle transport and G‐protein coupled receptors. The geometry of melanosomes from African clawed toad, Xenopus laevis, has been measured using scanning force microscopy (SFM). Three‐dimensional images from SFM were used to measure height, width, and length of the melanosomes (100 from aggregated cells and 100 from dispersed cells). The volumes of melanosomes isolated from aggregated and dispersed melanophores were significantly different (P<0.05, n=200). The average ellipsoidal volume was 0.14±0.01 (aggregated) and 0.17±0.01 μm3 (dispersed), a difference of 18%. The average major diameter was 810±20 and 880±20 nm for aggregated and dispersed melanosomes, respectively. To our knowledge, this is the first time SFM has been used to study melanosomes. This may provide an alternative non‐destructive technique that may be particularly suitable for studying morphological aspects of various melanin granules.  相似文献   

14.
Pigment migration in cultured erythrophores of the squirrel fish Holocentrus ascensionis, after manipulation with K+, epinephrine, 3',5'- dibutyryl cyclic adenosine monophosphate, theophylline, and caffeine, is essentially identical to that observed in this chromatophore in situ. For such observations, the erythrophores are dissociated from the scales with hyaluronidase and collagenase, and allowed to spread on an amorphous collagen substrate, where they resemble the discoid erythrophore in situ. In this state, they are readily fixed by glutaraldehyde and osmium tetroxide, and are then critical-point dried for whole-cell viewing in the high voltage electron microscope. The organization and fine structure of the erythrophore cytoplast was stereoscopically examined after fixation of the pigment granules in four experimental states: pigment dispersed, pigment aggregated, pigment aggregating, and pigment dispersing. In the dispersed cell, granules are contained in an extensive three-dimensional lattice composed of radially oriented microtubules and a network of fine filaments 3-6 nm in diameter (microtrabeculae), whereas in the aggregated cell, the microtrabecular system is absent, and the majority of the microtubules appear displaced into the cortices on the cytoplasmic surface of the plasma membrane. In cells fixed while aggregating, few microtrabeculae are observed, although formless thickenings are observed in the cortices, on granules, and between clumped granules. In dispersing cells, the microtrabecular system is reformed from material stored in the cortices and with the granules in the centrosphere. These observations suggest that the granules are suspended in a dynamic microtrabecular system that withdraws during pigment aggregation and is restructured during pigment dispersion. The microtubules guide linear granule motion not by defining physical channels, but by a recognizable affinity of microtubules, microtrabeculae, and granules for one another.  相似文献   

15.
alpha-Actinins, isolated from muscle and nonmuscle sources and labeled with various fluorescent dyes, were microinjected into living PtK2 cells during interphase to observe the reformation of stress fibers following cell division. Fluorescently labeled ovalbumin and bovine serum albumin were also injected as control proteins. alpha-Actinin was incorporated into stress fibers within 5 minutes after injection and remained present in the fibers for up to 11 days. The pattern of incorporation was the same regardless of whether the alpha-actinin was isolated from muscle or nonmuscle tissues or whether it was labeled with fluorescein, Lucifer Yellow, or rhodamine dyes. In contrast, neither labeled ovalbumin nor bovine serum albumin were incorporated into stress fibers. When the injected cells entered prophase, all stress fibers disassembled, resulting in a distribution of the fluorescent alpha-actinin throughout the cytoplasm. During cytokinesis, the fluorescent alpha-actinin was concentrated in the broad area between the separated chromosomes and along the edge of the cell in the cleavage area. Within 10 minutes after the completion of cleavage, the first fluorescent stress fibers reformed parallel to the spreading edges of the daughter cells and in close association with the midbody with a concomitant loss of alpha-actinin in the former cleavage furrow. Additional fibers formed adjacent to these first stress fibers. In some cases, new stress fibers formed between two existing stress fibers and some stress fibers moved up to 4 micron apart from one another in the course of 2 hours. Thus, fluorescent alpha-actinin, injected into living cells, undergoes the same cyclical changes in distribution as endogenous alpha-actinin during the cell cycle: from stress fibers to cleavage furrow and back to stress fibers.  相似文献   

16.
The distribution and origin of substance P (SP) and neurokinin A (NKA) were studied in rat in the anterior buccal glands, which are minor mucous salivary glands. Indirect immunofluorescence staining showed moderate SP and NKA innervation of salivary acini and interlobular ducts, whereas blood vessels were more sparsely innervated, and there were few nerve fibers in the stroma and around the intralobular ducts. About 10%–20% of the trigeminal ganglion cells showed equally strong immunoreactivity to both SP and NKA. Unilateral denervation of the branches of the trigeminal nerve caused complete disappearance of the stromal fibers and greatly reduced the number of all other SP-immunoreactive and NKA-immunoreactive nerve fibers. In the superior cervical ganglia, SP and NKA immunoreactivity was restricted to small intensely fluorescent cells; SP and NKA immunoreactivity was absent from principal ganglionic cells, and thus sympathectomy had no any effect on the number or distribution of fibers immunoreactive for SP and NKA in the anterior buccal glands. The fibers remaining after sensory denervation could have been of parasympathetic origin, indicating a dual origin of nerves immunoreactive for SP and NKA in these glands. The present data demonstrate that the major part of the glandular SP and NKA innervation in the minor salivary glands derives from the trigeminal ganglia. The distribution of the peripheral nerve fibers indicates that they may play a role in the delivery of potent neuropeptides involved in the vascular, secretory, and motor (myoepithelial cells) functions of salivary glands.  相似文献   

17.
Immunofluorescent staining of keratin fibers in cultured cells.   总被引:61,自引:0,他引:61  
T T Sun  H Green 《Cell》1978,14(3):469-476
Antibody prepared against a group of keratins purified from human stratum corneum was used to identify cells containing keratins by immunofluorescence. In sectioned tissue and in culture, keratinocytes of skin and other stratified squamous epithelia-whether human, rabbit of mouse-stained strongly, indicating homologous amino acid sequences in the keratins of these species. In all cases, the antibody revealed a dense cytoplasmic network of discrete fibers probably consisting of aggregated (tono-) filaments. The pattern of staining was not affected by cytochalasin B or colcemid. No keratins were detected in cultured cells of mesenchymal origin (3T3, NIL, BHK, human diploid fibroblasts) or in connective tissues, indicating that the 100 A filaments of fibroblasts are not related to the keratins. Keratinocytes at all stages of differentiation, including basal cells, stained brightly and therefore contained abundant keratins.  相似文献   

18.
An electron microscopy study showed that in melanophores with dispersed and aggregated pigment the sensitivity of the centrosome and the stability of microtubules were different and depended on the colcemid concentration. The structure of the centrosome didn't change upon exposure to colcemid in dispersed melanophores. In aggregated melanophores, on exposure to 10(-6) M colcemid, the centrosome retained its structure; colcemid at 10(-5)-10(-3) M caused a dramatic collapse of the centrosome. Treatment of aggregated melanophores with colcemid resulted in the complete disassembly of the microtubules; though microtubules in dispersed melanophores appear to be colcemid resistant. Light microscopy studies indicated that in Xenopus melanophores with aggregated or dispersed pigment melanosomes didn't change their location after exposure to 10(-3)-10(-6) M colcemid. Subsequent incubation in colcemid-free medium revealed that the cells retained their ability to translocate melanosomes in response to hormone stimulation. Electron microscopy data revealed the inactivation of the centrosome as MTOC (microtubule-organizing center) in dispersed melanophores with melatonin substituted for MSH in the presence of colcemid. In contrast, with melanocyte-stimulating hormone (MSH) substituted for melatonin, we observed the activation of the centrosome in aggregated cells. We showed that in aggregated melanophores pigment movement proceeded in the complete absence of microtubules, suggesting the involvement of a microtubule-independent component in the hormone-induced melanosome dispersion. However, we observed abnormal aggregation along colcemid-resistent microtubules in dispersed melanophores, suggesting the involvement of not only stable but also labile microtubules in the centripetal movement of melanosomes. The results raise the intriguing questions about the mechanism of the hormone and colcemid action on the centrosome structure and microtubule network in melanophores with dispersed and aggregated pigment.  相似文献   

19.
Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.  相似文献   

20.
The antipsychotic drug trifluoperazine (TFP) causes a reversible rounding of cells of the rat liver epithelial cell line, WIRL. We have investigated the cytoplasmic organization of these cells after TFP treatment using SEM, TEM and immunofluorescence and have observed significant differences between the control and treated cells. Mitochondria are converted to the condensed configuration with distended cristae and the endoplasmic rcticulum becomes tubular with distended cisternae. Intermediate filaments, visualized with a monoclonal antibody, are aggregated to a cap on the nucleus in an arrangement different from that induced by colcemid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号