首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
c-Src is a non-receptor tyrosine kinase whose activity is induced by phosphorylation at Y418 and translocation from the cytoplasm to the cell membrane. Increased activity of c-Src has been associated with cell proliferation, matrix adhesion, motility, and apoptosis in tumors. Immunohistochemistry suggested that activated (pY(418))-Src activity is increased in cyst-lining autosomal dominant polycystic kidney disease (ADPKD) epithelial cells in human and mouse ADPKD. Western blot analysis showed that SKI-606 (Wyeth) is a specific inhibitor of pY(418)-Src without demonstrable effects on epidermal growth factor receptor or ErbB2 activity in renal epithelia. In vitro studies on mouse inner medullary collecting duct (mIMCD) cells and human ADPKD cyst-lining epithelial cells showed that SKI-606 inhibited epithelial cell proliferation over a 24-h time frame. In addition, SKI-606 treatment caused a striking statistically significant decrease in adhesion of mIMCD and human ADPKD to extracellular collagen matrix. Retained viability of unattached cells was consistent with a primary effect on epithelial cell anchorage dependence mediated by the loss of extracellular matrix (ECM)-attachment due to α(2)β(1)-integrin function. SKI-606-mediated attenuation of the human ADPKD hyperproliferative and hyper-ECM-adhesive epithelial cell phenotype in vitro was paralleled by retardation of the renal cystic phenotype of Pkd1 orthologous ADPKD heterozygous mice in vivo. This suggests that SKI-606 has dual effects on cystic epithelial cell proliferation and ECM adhesion and may have therapeutic potential for ADPKD patients.  相似文献   

2.
Summary The distribution of type VI collagen was investigated immunohistochemically in the developing human kidney from 15 to 32 weeks gestational age and it was compared with that observed in the normal infantile and adult human kidney. In fetal kidney, type VI collagen was widely distributed as a fibrillar network in the subcapsularly undifferentiated mesenchyme and intertubular interstitium, and as a basement membrane-like structure around the ureteral bud branches, tubules, and collecting ducts. During nephrogenesis, type VI collagen disappeared from the induced mesenchyme close to the tips of ureteral branches, while it formed a distinct basement membrane-like structure around the early stages of nephron differentiation (comma-shaped and S-shaped bodies) and later along Bowman's capsule of capillary loop and maturing glomeruli. A strong immureactivity for type VI collagen was also found in the glomerular basement membrane and mesangial areas of capillary loop and maturing glomeruli. In infantile kidney, type VI collagen showed a distribution pattern similar to that observed during the fetal period. In adult human kidney, glomerular basement membrane showed a weak positivity for type VI collagen and the basement membrane-like staining around Bowman's capsule, tubules, and collecting ducts was less evident than in fetal and infantle kidney. Our immunohistochemical findings suggest that type VI collagen is a normal component of the glomerular and extraglomerular extracellular matrix of developing human kidney and that it undergoes changes in the expression during maturation.  相似文献   

3.
BACKGROUND: In a majority of cases, autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations within a putative open reading frame of the PKD1 gene. The encoded protein, polycystin, is predicted to span the plasma membrane several times and contains extracellular domains, suggestive of a role in cell adhesion. The cellular distribution and function of polycystin is not known. MATERIALS AND METHODS: We selected as immunogens two conserved 15 amino acid peptides: P1, located in a predicted extracellular region of polycystin, and P2, located in the C-terminal putative cytoplasmic tail. The anti-peptide antibodies from immunized rabbits were affinity purified on peptide-coupled resins and their specificity confirmed by their selective binding to recombinant polycystin fusion proteins. Western blotting and immunohistochemistry were used to characterize the size, tissue, and cell distribution of polycystin. RESULTS: A high-molecular mass protein (about 642 kD) was detected by Western blotting in rat brain tissue. A few additional bands, in the 100- to 400-kD range, probably representing tissue-specific variants and/or proteolytic fragments, were recognized in human and rat tissues. Polycystin was abundantly expressed in fetal kidney epithelia, where it displayed basolateral and apical membrane distribution in epithelial cells of the ureteric buds, collecting ducts, and glomeruli. In normal human adult kidney, polycystin was detected at moderate levels and in a cell surface-associated distribution in cortical collecting ducts and glomerular visceral epithelium. Expression of polycystin was significantly increased in cyst-lining epithelium in ADPKD kidneys, but was primarily intracellular. CONCLUSIONS: Polycystin appears to be a developmentally regulated and membrane-associated glycoprotein. Its intracellular localization in the cyst-lining epithelium of ADPKD kidneys suggests an abnormality in protein sorting in this disease.  相似文献   

4.
Rabbit nephron segments of proximal convoluted tubules (PCT); proximal straight tubules (PST); cortical and medullary thick ascending limbs of Henle's loop (CAL, MAL); and cortical, outer medullary, and inner medullary collecting tubules (CCT, OMCT, IMCT) were individually microdissected and grown in monolayer culture in hormone supplemented, defined media. Factors favoring a rapid onset of proliferation included young donor age, distal tubule origin, and the addition of 3% fetal calf serum to the medium. All primary cultures had polarized morphology with apical microvilli facing the medium and basement membrane-like material adjacent to the dish. Differentiated properties characteristic of the tubular epithelium of origin retained in cultures included ultrastructural characteristics and cytochemically demonstrable marker enzyme proportions. PCT and PST were rich in alkaline phosphatase; CAL stained strongly for NaK-ATPase; CCT contained two cell populations with regard to cytochrome oxidase reaction. A CCT-specific anti-keratin antibody (aLEA) was immunolocalized in CCT cultures, and a PST cytokeratin antibody stained PST cultures. The biochemical response of adenylate cyclase to putative stimulating agents was the same in primary cultures as in freshly isolated tubules. In PCT and PST adenylate cyclase activity was stimulated by parathyroid hormone (PTH) but not by arginine vasopressin (AVP); CAL and MAL adenylate cyclase was stimulated by neither PTH nor AVP; CCT, OMCT, and IMCT adenylate cyclase was stimulated by AVP but not by PTH. NaF stimulated adenylate cyclase activity in every cultured segment. It is concluded that primary cultures of individually microdissected rabbit PCT, PST, CAL, MAL, CCT, OMCT, and IMCT retain differentiated characteristics with regard to ultrastructure, marker enzymes, cytoskeletal proteins, and hormone response of adenylate cyclase and provide a new system for studying normal and abnormal functions of the heterogeneous tubular epithelia in the kidney.  相似文献   

5.
Liu Y  Dai B  Xu C  Fu L  Hua Z  Mei C 《PloS one》2011,6(12):e28915

Background

Interstitial fibrosis plays an important role in progressive renal dysfunction in autosomal dominant polycystic kidney disease (ADPKD). In our previous studies, we confirmed that PPAR-γ agonist, rosiglitazone could protect renal function and prolong the survival of a slowly progressive ADPKD animal model by reducing renal fibrosis. However, the mechanism remains unknown.

Methods

Primary culture epithelial cells pretreated with TGF-β1 were incubated with rosiglitazone. Extracellular matrix proteins were detected using real-time PCR and Western blotting. MAPK and Smad2 phosphorylation were measured with western blot. ERK1/2 pathway and P38 pathway were inhibited with the specific inhibitors PD98059 and SB203580. The Smad2 pathway was blocked with the siRNA. To address whether PPAR-γ agonist-mediated inhibition of TGF-β1–induced collagen type I expression was mediated through a PPAR-γ dependent mechanism, genetic and pharmaceutical approaches were used to block the activity of endogenous PPARγ.

Results

TGF-β1-stimulated collagen type I and fibronectin expression of ADPKD cyst-lining epithelia were inhibited by rosiglitazone in a dosage-dependent manner. Smad2, ERK1/2 and P38 pathways were activated in response to TGF-β1; however, TGF-β1 had little effect on JNK pathway. Rosiglitazone suppressed TGF-β1 induced Smad2 activation, while ERK1/2 and P38MAPK signals remained unaffected. Rosiglitazone could also attenuate TGF-β1-stimulated collagen type I and fibronectin expression in primary renal tubular epithelial cells, but had no effect on TGF-β1–induced activation of Smad2, ERK1/2 and P38 pathways. There was no crosstalk between the Smad2 and MAPK pathways in ADPKD cyst-lining epithelial cells. These inhibitory effects of rosiglitazone were reversed by the PPARγ specific antagonist GW9662 and PPARγ siRNA.

Conclusion

ADPKD cyst-lining epithelial cells participate in TGF-β1 mediated fibrogenesis. Rosiglitazone could suppress TGF-β1–induced collagen type I and fibronectin expression in ADPKD cyst-lining epithelia through modulation of the Smad2 pathway. Our study may provide therapeutic basis for clinical applications of rosiglitazone in retarding the progression of ADPKD.  相似文献   

6.
Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.  相似文献   

7.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

8.
The mechanisms of toxicity of cyclosporine A (CsA) were studied in primary cultures of individually microdissected rabbit and human renal tubules of proximal and distal regions of the nephron. A direct toxic effect of CsA on renal tubule epithelia was demonstrated using nigrosine uptake and LDH release as indicators of cell death. Proximal convoluted tubules (PCT) and proximal straight tubules (PST) were shown to be highly sensitive, while thick ascending limbs of Henle (TAL) were much less sensitive and cortical collecting tubules (CCT) relatively resistant. The effects of CsA were time and dose dependent over the range 50 ng/ml to 100 micrograms/ml. Protection against CsA-induced PST cell death was afforded by reduction in extracellular calcium levels in the media or addition of the calcium entry antagonists: verapamil, nifedipine or diltiazem. In addition, treatment with the cysteine protease inhibitor, E64, attenuated CsA-induced cell damage. A role for the lysosomal cysteine proteases (cathepsins), however, was ruled out on the basis of identical activity levels in all cell types; no beneficial effects of lysosomal enzyme depletion and no evidence of lysosomal rupture prior to death. By contrast, a role for the cytoplasmic, calcium-dependent cysteine protease calpain was suggested since activity levels were significantly higher in PST than CCT cultures and were inducible by CsA.  相似文献   

9.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

10.
The interaction of transforming growth factor beta (TGF beta) with extracellular matrix macromolecules was examined by using radiolabeled TGF beta and various matrix macromolecules immobilized on nitrocellulose. TGF beta bound to collagen IV with greater affinity than to other extracellular matrix macromolecules tested. Neither laminin nor fibronectin, both of which bind type IV collagen, interfered with the binding of TGF beta to type IV collagen. TGF beta 2 competed effectively with TGF beta 1 for binding to type IV collagen. The biological effect of TGF beta was tested by an assay based on inhibition of proliferation of an osteoblast cell line, MC3T3-E1. The results demonstrated that the effect of TGF beta 1 was sustained when cells were grown on type IV collagen compared to cells grown on laminin, collagen type I, and plastic. These results demonstrate that extracellular matrix components may function as an affinity matrix for binding and immobilizing soluble growth and differentiation factors. In view of the demonstrated role of basement membranes in development the present results imply an important function for transforming growth factor beta bound to collagen IV in local regulation of cell proliferation and differentiation.  相似文献   

11.
In the embryo, epithelia give rise to mesenchyme at specific times and places. Recently, it has been reported (Greenburg, G., and E. D. Hay. 1986. Dev. Biol. 115:363-379; Greenberg, G., and E. D. Hay. 1988. Development (Camb.). 102:605-622) that definitive epithelia can give rise to fibroblast-like cells when suspended within type I collagen gels. We wanted to know whether Madin-Darby canine kidney (MDCK) cells, an epithelial line, can form mesenchyme under similar conditions. Small explants of MDCK cells on basement membrane were suspended within or placed on top of extracellular matrix gels. MDCK cells on basement membrane gel are tall, columnar in shape, and ultrastructurally resemble epithelia transporting fluid and ions. MDCK explants cultured on type I collagen gel give rise to isolated fusiform-shaped cells that migrate over the gel surface. The fusiform cells extend pseudopodia and filopodia, lose cell membrane specializations, and develop an actin cortex around the entire cell. Unlike true mesenchymal cells, which express vimentin and type I collagen, fusiform cells produce both keratin and vimentin, continue to express laminin, and do not turn on type I collagen. Fusiform cells are not apically-basally polarized, but show mesenchymal cell polarity. Influenza hemagglutinin and virus budding localize to the front end or entire cell surface. Na,K-ATPase occurs intracellularly and also symmetrically distributes on the cell surface. Fodrin becomes diffusely distributed along the plasma membrane, ZO-1 cannot be detected, and desmoplakins distribute randomly in the cytoplasm. The loss of epithelial polarity and acquisition of mesenchymal cell polarity and shape by fusiform MDCK cells on type I collagen gel was previously unsuspected. The phenomenon may offer new opportunities for studying cytoplasmic and nuclear mechanisms regulating cell shape and polarity.  相似文献   

12.
Summary The distribution of type IV collagen and laminin was studied by immunocytochemistry during rat gonadal morphogenesis and postnatal development of the testis and epididymis. Immunostaining appeared as early as the 12th day of gestation along the basement membranes of the mesonephric-gonadal complex. The connection between some mesonephric tubules and coelomic epithelium was seen between the 12th and 13th day of gestation. Discontinuous immunostained basement membranes delineated the differentiating sexual cords in 13-day-old fetuses; this process probably began in the inner part of the gonadal ridge. The seminiferous cords surrounded by a continuous immunoreactive basement membrane are separated from the coelomic epithelium by the differentiating tunica albuginea in 14-day-old fetuses. During the postnatal maturation of epididymis and testis, the differentiation of peritubular cells is accompanied by a progressive organisation of the extracellular matrix into a continuous basement membrane. This change is associated with a gradual condensation of peritubular cells inducing an increase of immunostaining. In adult animals, the tubular wall of epididymis is thicker than the lamina propria of seminiferous tubules. Both type IV collagen and laminin immunostaining paralleled during ontogenesis at the light-microscope level.  相似文献   

13.
The distribution of type IV collagen and laminin was studied by immunocytochemistry during rat gonadal morphogenesis and postnatal development of the testis and epididymis. Immunostaining appeared as early as the 12th day of gestation along the basement membranes of the mesonephric-gonadal complex. The connection between some mesonephric tubules and coelomic epithelium was seen between the 12th and 13th day of gestation. Discontinuous immunostained basement membranes delineated the differentiating sexual cords in 13-day-old fetuses; this process probably began in the inner part of the gonadal ridge. The seminiferous cords surrounded by a continuous immunoreactive basement membrane are separated from the coelomic epithelium by the differentiating tunica albuginea in 14-day-old fetuses. During the postnatal maturation of epididymis and testis, the differentiation of peritubular cells is accompanied by a progressive organisation of the extracellular matrix into a continuous basement membrane. This change is associated with a gradual condensation of peritubular cells inducing an increase of immunostaining. In adult animals, the tubular wall of epididymis is thicker than the lamina propria of seminiferous tubules. Both type IV collagen and laminin immunostaining paralleled during ontogenesis at the light-microscope level.  相似文献   

14.
Using human type IV and type I + III collagens and a new, nontoxic cross-linking procedure, we have developed a cell-free bilayered human dermal substitute for organotypic culture and transplantation of human skin keratinocytes. We have studied the formation of the basement membrane, and the differentiation of keratinocytes grown on the type IV collagen layer of this dermal substitute, in vitro and after grafting onto nude mice. These studies demonstrated the formation of essential constituents of the basement membrane in culture: hemidesmosomes and deposition of extracellular matrix on the top of the type IV collagen were observed as early as 6 days after plating of human keratinocytes. Although the keratinocytes formed a well-organized multilayered epithelium, they exhibited limited differentiation when grown submerged in liquid medium. However, the multilayered sheet obtained after 14 days in submerged culture was composed of a regular basal cell layer, several nucleated suprabasal cell layers containing granular cells, and several dense, anucleated cell layers. The grafting experiments have shown a good biocompatibility of the dermal substitute. It is repopulated by fibroblasts, newly synthesized collagen, vessels, and a few mononuclear cells. At Day 14 after grafting, the type IV collagen layer was still present and very dense, and the basement membrane appeared as in culture, with numerous well-structured hemidesmosomes and deposition of extracellular matrix resembling lamina densa. At Day 55 after transplantation, even if the epidermal graft did not exhibit all the characteristics of the normal epidermis in vivo, it was very close to it. At this stage, the basement membrane was complete, with structures clearly indicative of anchoring fibrils. This new dermal substitute offers many advantages. It is stable and easy to handle. Its production is standardized. The oxidation induced by periodic acid led to a nontoxic cross-linked matrix. This dermal substitute is the first one entirely composed of human collagens. The type I + III collagen underlayer is reorganized when grafted. It supports a type IV collagen top layer which offers an excellent substrate for keratinocytes, favors their anchorage, and favors the formation of the basement membrane in vitro. This dermal substitute could be useful for wound coverage or as an in vitro model for toxicological and pharmacological studies.  相似文献   

15.
There is emerging evidence that the structure and function of a cell is dependent in part on the contacts that cells make with the extracellular matrix. We report here the effect of extracellular matrices secreted from both normal and tumor cells have on the structure of normal rat kidney epithelial cells. Normal rat kidney cells plated on the basement membrane secreted by tumor cells adopt a morphology and phenotype which closely resembles a Kirsten-ras transformed normal rat kidney cell. This morphologic transformation was not observed for cells plated on individual extracellular matrix components or on basement membrane secreted by normal placenta cells. This suggests that tumor derived basement membrane has unique characteristics which may cause morphologic transformation of normal rat kidney cells.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited nephropathy. The development and enlargement of cysts in ADPKD requires tubular cell proliferation, abnormalities in the extracellular matrix and transepithelial fluid secretion. Multiple studies have suggested that fluid secretion across ADPKD cyst-lining cells is driven by the transepithelial secretion of chloride, mediated by the apical CFTR channel and specific basolateral transporters. The whole secretory process is stimulated by increased levels of cAMP in the cells, probably reflecting modifications in the intracellular calcium homeostasis and abnormal stimulation of the vasopressin V2 receptor. This review will focus on the pathophysiology of fluid secretion in ADPKD cysts, starting with classic, morphological and physiological studies that were followed by investigations of the molecular mechanisms involved and therapeutic trials targeting these pathways in cellular and animal models and ADPKD patients. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

17.
Summary We have analyzed the ability of the physical substratum to modulate both the ultrastructural and protein synthetic characteristics of the Madin-Darby canine kidney (MDCK) renal cell line. When MDCK cells were seeded on Millipore Millicell CM microporous membrane cell culture inserts they demonstrated a more columnar organization with an increase in cell density sixfold greater than the same cells seeded on conventional plastic substrata. After 1 wk postseeding on the microporous membrane a partial basal lamina was noted, with a contiguous basement membrane being apparent after 2 wk. One-dimensional sodium dodecyl sulfate gel electrophoresis was used to analyze detergent-solubilized proteins from MDCK cells maintained on plastic substrata vs. microporous membranes. When proteins were pulse-labeled with [35S]methionine, a 55 kDa protein was evident in the cytosolic extract of cells grown on collagen, laminin, and nontreated plastic substrata; but this labeled protein was not evident in similar extracts from cells grown on collagen and laminin-coated microporous membranes. To test if the polarized, basement-membrane secreting phenotype of the MDCK cells could be generated on a microporous membrane without pretreatment with any extracellular matrix (ECM) components, cells were seeded on the Millipore Millicell HA (cellulosic) microporous membrane. This type of substrata does not need a coating of ECM components for cell attachment. A partial basement membrane was formed below cells where the basal surface of the cell was planar, but not in areas where the cell formed large cytoplasmic extensions into the filter. This led us to the conclusion that the microporous nature of the substrata can dictate both ultrastructural and protein synthetic activities of MDCK cells. Furthermore, we suggest that both the planar nature of the basal surface and the microporosity of the substrate are corequisites for the deposition of the basement membrane.  相似文献   

18.
A growth factor, mammary-derived growth factor 1 (MDGF1), has been purified to apparent homogeneity from human milk. The factor is a pepsin-sensitive, reducing agent-insensitive protein with a molecular mass of 62 kDa and a pI of 4.8. An apparently identical factor has been isolated from human mammary tumors, suggesting that MDGF1 might be made by and act as an autocrine growth factor for mammary cells. High affinity receptors for MDGF1 have been detected on mouse mammary cells, normal rat kidney cells, and A431 epidermoid cells (KD = 2 X 10(-10) M). MDGF1 at picomolar levels stimulates the growth of mammary cells and greatly amplifies their production of collagen, apparently via elevating collagen mRNA levels, an effect that is demonstrated for normal rat kidney cells. The responsiveness of mammary cells to MDGF1 is attenuated when the cells are grown on a basement membrane collagen substratum, a component of the extracellular matrix upon which these cells normally rest in vivo. MDGF1 thus may regulate the production of new basement membrane as mammary epithelium invades the stroma during proliferation.  相似文献   

19.
Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.  相似文献   

20.
A previously undescribed protein has been isolated and purified from the extracellular matrix of the Engelbreth-Holm-Swarm (EHS) tumor, a murine tumor that synthesizes an extensive matrix composed of basement membrane molecules. Molecular characterization of the molecule determined that it is a glycoprotein with internal disulfide bonds and an isoelectric point of 6.0. Electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the glycoprotein migrated as a diffuse band with a molecular weight of approximately 72,000-80,000. The amino acid composition was significantly different from known basement membrane components. Polyclonal antibodies that specifically recognize the glycoprotein localized it to the kidney glomerular basement membrane. These antibodies did not cross-react with either known basement membrane components (laminin, type IV collagen, and heparan sulfate proteoglycan), with 70K "culture shock" protein or with components of normal mouse serum (including mouse transferrin, albumin, or alpha-fetoprotein), when analyzed by "Western" immunoblots. Our data indicate that the glycoprotein is synthesized by the EHS tumor cells and is present at relatively high levels in the EHS tumor matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号