首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylglyoxal-bis(guanylhydrazone) diHCl (MGBG), an inhibitor of S-adenosylmethionine decarboxylase, was found to induce starfish oocyte maturation at concentrations above 30 microM. Among several analogs of MGBG three induce oocyte maturation and one lacks the maturation-inducing activity while possessing the S-adenosylmethionine decarboxylase-inhibiting activity. Although MGBG is required during a slightly longer period than the natural hormone 1-methyladenine (1-MeAde), the maturation kinetics are identical. MGBG-induced maturation is sensitive to the same inhibitors as 1-MeAde-induced maturation (theophylline, caffeine, procaine, nicotine, NH4Cl, dansylcadaverine, vinblastine, R24571, and trifluoperazine). Inhibition is reversed by increasing the MGBG concentration. MGBG also induces an increase of protein phosphorylation. MGBG and 1-MeAde were separated on the basis of charcoal adsorption, MgSO4 precipitation, and thin-layer chromatography. MGBG covalently linked to CH-Sepharose 4B induces maturation in oocytes whose jelly layer and vitelline coat have been removed by a moderate pronase treatment, but not in the untreated oocytes. The MGBG-CH-Sepharose 4B beads come in close contact with the plasma membrane only in the pronase-treated oocytes. The mode of action of MGBG and the implications of these results in the purification of the 1-MeAde receptor are discussed.  相似文献   

2.
Oocyte maturation (meiosis re-initiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Following hormonal stimulation of the oocyte, an intracellular Maturation Promoting Factor (MPF) appears in the cytoplasm which triggers nuclear envelope breakdown and maturation divisions. alpha-Naphthylphosphate (alpha-NP), a widely used phosphatase inhibitor/substrate, was found to induce oocyte maturation when microinjected intracellularly (50% maturation of 3.5 mM; 100% above 6mM, final intracellular concentration) into oocytes of Marthasterias and Asterias but not of Astropecten. As 1-MeAde, alpha-NP triggers a complete maturation, i.e. germinal vesicle breakdown, extrusion of the two polar bodies and formation of the female pronucleus. The kinetics of alpha-NP-induced maturation (35-45 min) is, however, longer than the kinetics of 1-MeAde-induced maturation (18-20 min). The addition of alpha-NP externally to oocytes does not trigger maturation. Among several reported phosphatase inhibitors, including two natural protein phosphatase inhibitors and several products structurally related to alpha-NP, only alpha-NP was found capable of inducing maturation when microinjection into oocytes. alpha-NP triggers the appearance of MPF activity in the cytoplasm of oocytes into which it has been injected. Although alpha-NP-induced maturation is insensitive to inhibitors whose action is known to be restricted to the hormone-dependent period (such as the protease inhibitor leupeptin), it is blocked by inhibitors of MPF action (such as nicotinamide and lithium). Finally it was found that alpha-NP-induced maturation is inhibited by simultaneous microinjection of protein phosphatase-2A; also, alpha-NP, classically used as an inhibitor of acid and alkaline phosphatases, is able to inhibit protein phosphatases, is able to inhibit protein phosphatases 1 and 2 A. The addition of alpha-NP to oocytes increases the level of phosphorylated proteins. These results constitute direct evidence that an elevated level of phosphorylated proteins is sufficient to trigger MPF activity and to induce maturation.  相似文献   

3.
Injections of the regulatory subunit of type I cAMP-dependent protein kinase, of the heat-stable inhibitor protein of cAMP-dependent protein kinase and of calmodulin have no effect on meiosis reinitiation. Drugs, including theophylline, caffeine and procaine, which have been shown previously to inhibit 1-methyladenine (1-MeAde)-induced Ca2+ release, both in living starfish oocytes and from plasma membrane-rich fractions obtained from isolated cortices, inhibit meiosis reinitiation when added before—but not after—the end of the hormone-dependent period (period when presence of the hormone in the medium is required for meiosis to occur). In the same conditions, theophylline suppresses 1-MeAde-induced stimulation of protein phosphorylation. Injection of cholera toxin subunit A increases oocyte sensitivity to 1-MeAde. Catalytic subunit of cAMP-dependent protein kinase (C) inhibits meiosis reinitiation when injected before the end of the hormone-dependent period. Oocytes can be released from inhibition due to C injection by raising 1-Me-Ade concentration. These findings support the view that Ca2+ release occurs until transduction of the hormonal message (i.e., its intramembrane transfer) has been completed and show that protein phosphorylation remains under plasma membrane control until that time. They also suggest that transduction of the hormonal message might be modulated by intracellular cAMP and membrane phosphorylation, although cAMP content does not change following 1-MeAde addition.  相似文献   

4.
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Cyclic AMP seems to play a negative role in maturation since 1-MeAde triggers a decrease of the oocyte cAMP concentration and since intracellular microinjections of cAMP delay or inhibit maturation. Cyclic GMP is also inhibitory but other nucleotides such as cCMP, cIMP, and cUMP are inactive. The involvement of cAMP and cGMP in the control of oocyte maturation has been further investigated by the use of the stereoisomers of the phosphodiesterase-stable adenosine and guanosine 3',5'-phosphorothioates (cAMPS and cGMPS). The Sp isomers of cAMPS and cGMPS respectively activate cAMP-dependent protein kinase and cGMP-dependent kinase, while the Rp isomers inhibit the kinases. Extracellular addition of these cAMPS and cGMPS isomers has no effect on the oocytes. Intracellular microinjection of the kinase-activating (Sp)-cAMPS and (Sp)-cGMPS delays or inhibits 1-MeAde-induced maturation in a concentration-dependent manner (I50, 30 and 300 microM, respectively). Microinjections of (Rp)-cAMPS and (Rp)-cGMPS have no inhibitory effects and neither trigger nor facilitate maturation. Using various analogs, we found that the delaying or inhibiting effect is restricted to the compounds activating cAMP-dependent kinase, while the compounds inactive on or inhibiting the kinase have no effects on maturation. The inhibitory effect of (Sp)-cAMPS can be reversed by comicroinjection of the heat-stable inhibitor of cAMP-dependent protein kinase, by comicroinjection of the antagonist (Rp)-cAMPS, or by an increase in the 1-MeAde concentration. The negative effects of (Sp)-cAMPS or (Sp)-cGMPS are observed only when these isomers are microinjected during the hormone-dependent period. These results suggest that a cAMP-dependent inhibitory pathway participates in the maintenance of the prophase arrest of oocytes and that 1-MeAde acts both by inhibiting this negative pathway (dis-inhibitory pathway) and by stimulating a parallel activatory pathway leading to oocyte maturation. The generality of this mechanism is discussed.  相似文献   

5.
Injections of the regulatory subunit of type I cAMP-dependent protein kinase, of the heat-stable inhibitor protein of cAMP-dependent protein kinase and of calmodulin have no effect on meiosis reinitiation. Drugs, including theophylline, caffeine and procaine, which have been shown previously to inhibit 1-methyladenine (1-MeAde)-induced Ca2+ release, both in living starfish oocytes and from plasma membrane-rich fractions obtained from isolated cortices, inhibit meiosis reinitiation when added before—but not after—the end of the hormone-dependent period (period when presence of the hormone in the medium is required for meiosis to occur). In the same conditions, theophylline suppresses 1-MeAde-induced stimulation of protein phosphorylation. Injection of cholera toxin subunit A increases oocyte sensitivity to 1-MeAde. Catalytic subunit of cAMP-dependent protein kinase (C) inhibits meiosis reinitiation when injected before the end of the hormone-dependent period. Oocytes can be released from inhibition due to C injection by raising 1-Me-Ade concentration. These findings support the view that Ca2+ release occurs until transduction of the hormonal message (i.e., its intramembrane transfer) has been completed and show that protein phosphorylation remains under plasma membrane control until that time. They also suggest that transduction of the hormonal message might be modulated by intracellular cAMP and membrane phosphorylation, although cAMP content does not change following 1-MeAde addition.  相似文献   

6.
Starfish oocyte maturation is triggered by a natural hormone, 1-methyladenine (1-MeAde), produced in the follicle cells, or artificially by dithiothreitol (DTT). These substances act on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), which induces germinal vesicle breakdown (GVBD) and subsequent processes of meiotic maturation. Further, MPF is amplified in immature oocytes that have received the injection of MPF. In this paper the effect of leupeptin and antipain, protease inhibitors of microbial origin, on starfish oocyte maturation was investigated. The protease inhibitors were found to inhibit 1-MeAde-induced maturation when they were applied externally or injected into oocytes. DTT-induced maturation was also inhibited by injection of leupeptin. However, leupeptin did not inhibit the maturation-inducing action of MPF or MPF amplification. These results show that the protease inhibitors suppress the production of MPF by 1-MeAde or DTT, suggesting that some endogenous protease(s) acts in the production of MPF.  相似文献   

7.
Oocyte maturation (meiosis re-initiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Following hormonal stimulation of the oocyte, an intracellular Maturation Promoting Factor (MPF) appears in the cytoplasm which triggers nuclear envelope breakdown and maturation divisions. Microinjection of pure preparations of the catalytic subunits of protein phosphatases 1 and 2A inhibits 1-MeAde-induced maturation in a dose-dependent manner. Calmodulin-dependent protein phosphatase 2B is inefficient. Maturation induced by mimetics of 1-MeAde, such as dithiothreitol (DTT), methylglyoxal-bis(guanylhydrazone) (MGBG), 8-hydroxyeicosatetraenoic acid (8 HETE) and arachidonic acid (AA) is also inhibited by these protein phosphatases. In all cases inhibition can be reversed by increasing the concentration of 1-Me-Ade or of mimetic. Alkaline phosphatase also inhibits maturation in a dose-dependent way and in a reversible manner. Microinjection of protein phosphatase is still effective when preformed long after the end of the hormone-dependent period, and can even be effective a few minutes before the breakdown of the nuclear envelope. No detectable MPF activity is found in 1-MeAde-treated phosphatase-injected oocytes. However, microinjection of phosphatase 2A simultaneously with MPF (obtained from 1-MeAde-treated donors) does not result in inhibition. These results constitute direct evidence for the necessity of an elevated level of phosphorylated proteins for MPF activity and maturation. The mode of action of 1-MeAde in inducing starfish oocyte maturation is discussed in relation to protein phosphorylation.  相似文献   

8.
Oocyte maturation (meiosis re-initiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Following hormonal stimulation of the oocyte, an intracellular Maturation Promoting Factor (MPF) appears in the cytoplasm which triggers nuclear envelope breakdown and maturation divisions. α-Naphthylphosphate (α-NP), a widely used phosphatase inhibitor/substrate, was found to induce oocyte maturation when microinjected intracellularly (50% maturation at 3.5 mM; 100% above 6 mM, final intracellular concentration) into oocytes of Marthasterias and Asterias but not of Astropecten. As 1-MeAde, α-NP triggers a complete maturation, i.e. germinal vesicle breakdown, extrusion of the two polar bodies and formation of the female pronucleus. The kinetics of α-NP-induced maturation (35–45 min) is, however, longer than the kinetics of 1-MeAde-induced maturation (18–20 min). The addition of α-NP externally to oocytes does not trigger maturation. Among several reported phosphatase inhibitors, including two natural protein phosphatase inhibitors and several products structurally related to α-NP, only α-NP was found capable of inducing maturation when microinjected into oocytes. α-NP triggers the appearance of MPF activity in the cytoplasm of oocytes into which it has been injected. Although α-NP-induced maturation is insensitive to inhibitors whose action is known to be restricted to the hormone-dependent period (such as the protease inhibitor leupeptin), it is blocked by inhibitors of MPF action (such as nicotinamide and lithium). Finally it was found that α-NP-induced maturation is inhibited by simultaneous microinjection of protein phosphatase-2A; also, α-NP, classically used as an inhibitor of acid and alkaline phosphatases, is able to inhibit protein phosphatases 1 and 2 A. The addition of α-NP to oocytes increases the level of phosphorylated proteins. These results constitute direct evidence that an elevated level of phosphorylated proteins is sufficient to trigger MPF activity and to induce maturation.  相似文献   

9.
Effect of tumor promoters including phorbol esters and teleocidin on 1-methyladenine (1-MeAde)-induced oocyte maturation was studied in the starfish. When isolated immature oocytes were treated with 1-MeAde and 12-O-tetradecanoylphorbol-13-acetate (TPA), 1-MeAde-induced maturation was completely inhibited at more than 2.5 μg/ml. However, if TPA was added after the hormone-dependent period (the minimum period wherein 1-MeAde is required), such maturation-inhibiting effect was no longer observed. Pretreatment with TPA for 5 min showed that its inhibitory action is irreversible. However, when TPA-injected oocytes were treated with 1-MeAde, all oocytes underwent germinal vesicle breakdown (GVBD). GVBD was induced in TPA-treated oocytes upon injection of the cytoplasm of maturing oocytes containing maturation-promoting factor (MPF). These facts show that TPA acts on the oocyte surface to inhibit the production of MPF. Retinoids including retinal, retinol and retinoic acid reversed the inhibitory effect of TPA on 1-MeAde-induced maturation. Experiments with various phorbol esters showed a good correlation between their maturation-inhibiting activity and their known tumor-promoting activity. Further, telecoidin, which is structurally unrelated to phorbol esters, inhibited 1-MeAde action. Since both tumor-promoting phorbol esters and teleocidin are known to activate Ca2+ -activated, phospholipid-dependent protein kinase (protein kinase C) and their activation effect is inhibited by retinoids, it appears that the activation of protein kinase C by tumor promoters is involved in blocking of 1-MeAde action.  相似文献   

10.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

11.
The effect of weak bases on starfish oocyte maturation induced by 1-methyladenine (1-MeAde) was investigated. Ammonium chloride, nicotine, and procaine inhibited meiosis reinitiation induced by either 1-MeAde or dithiothreitol. The inhibitory effect of the weak bases was highly dependent on the pH of sea water and increased with the increase in pH. These weak bases neither inhibited nor delayed meiosis reinitiation when given after the end of the hormone-dependent period, the period during which 1-MeAde is required for meiosis to occur, whereas they blocked hormone action when added just before the end of the hormone-dependent period.  相似文献   

12.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

13.
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Oocytes of Evasterias troschelii contain 0.43 pmole cyclic AMP/mg protein and 0.47 pmole cyclic GMP/mg protein. Upon stimulation by 1-MeAde the oocytes undergo a moderate (10-30%) decrease in their cAMP concentration. The concentration of cGMP remains unaltered. Oocytes treated with forskolin, an activator of adenylate cyclase, increase their cAMP concentration over 35-fold, up to 16 pmole cAMP/mg protein. When stimulated by 1-MeAde these forskolin-pretreated oocytes undergo a major (50-70%) decrease in their cAMP concentration. A similar decrease is triggered by mimetics of 1-MeAde, such as dithiothreitol, arachidonic acid (AA), and 8-hydroxyeicosatetraenoic acid (8-HETE), but not by adenine which is inactive. 1-MeAde-stimulated oocytes of Pisaster ochraceus also undergo a decrease in cAMP content, the size of which is increased by forskolin. Although a decrease in cAMP begins at sub-threshold 1-MeAde concentrations, the maximal decrease occurs at the same concentration of 1-MeAde needed for maturation induction and a further 1000-fold increase of the 1-MeAde concentration has no further effect. Upon removal of 1-MeAde, the cAMP concentration immediately increases to its original level. Sequential addition and removal of 1-MeAde triggers a sequential decrease and increase of the cAMP concentration, illustrating the continuous requirement for 1-MeAde for eliciting the decrease. Successive additions of 1-MeAde, however, do not trigger further decreases of the cAMP concentration. The temperature dependences of the cAMP concentration decrease and of the hormone-dependent period (HDP; the time of contact with 1-MeAde required for induction of maturation) are closely related. Forskolin, which increases the cAMP concentration, also increases the duration of the HDP (2.5-fold), delays the time course of protein phosphorylation burst and germinal vesicle breakdown, and inhibits AA- and 8-HETE-induced maturation. We conclude that 1-MeAde triggers a drop in cAMP concentration, which is tightly associated with the hormone-dependent period of oocyte maturation.  相似文献   

14.
86Rubidium+ uptake, but not 86Rubidium efflux, is strongly stimulated after addition of the meiosis inducing hormone 1-methyladenine (1-MeAde) to prophase blocked oocytes of the starfish Marthasterias glacialis. This stimulation is a transient process which does not require the continuous presence of 1-MeAde and is elicited within 1 minute of contact. 1-MeAde and its biologically active structural analogs fully stimulate Rb+ uptake at concentrations which are about two orders of magnitude lower than those required to trigger meiosis reinitiation but which already release underthreshold levels of Ca2+ from the inner part of the plasma membrane. External Ca2+ concentrations effective in triggering meiosis reinitiation also stimulate Rb+ influx, while drugs like D600, theophyllin and caffein which suppress the hormone induced Ca2+ release, simultaneously preclude the stimulation of Rb+ uptake. Dithiothreitol (DTT) which mimicks 1-MeAde action in releasing Ca2+ and inducing meiosis acts both on the efflux and on active and passive Rb+ influxes. Ouabain, the classical inhibitor of the Na+, K+ pump does not preclude meiosis reinitiation under the influence of 1-MeAde, its agonists of mimetics. It suppresses the active component of Rb+ uptake both in control or stimulate oocytes. When applied only in preincubation before starting the hormone treatment, it cannot however inhibit the stimulation of Rb+ uptake, while basal pump inhibition is preserved. These results demonstrate that stimulation of the active Rb+ or K+ transport is not indispensable to meiosis reinitiation. They suggest moreover that the hormone induced Ca2+ release from the plasma membrane may be responsible for unmasking new ouabain sensitive transport sites.  相似文献   

15.
1-Methyladenine (1-MeAde) is known to be a natural inducer of starfish oocyte maturation. Disulfide-reducing agents such as dithiothreitol (DTT) and 2, 3-dimercapto-1-propanol (BAL) are known to mimic the action of 1-MeAde in inducing starfish oocyte maturation. Although 1-MeAde failed to induce oocyte maturation in sea cucumbers, breakdown of germinal vesicles and subsequent meiotic behaviour of chromosomes were induced by the treatment with DTT in the pronase-treated oocytes of the sea cucumber, Stichopus japonicus. These findings suggest that reduction of disulfide bonds plays an important role in triggering oocyte maturation in some marine forms such as echinoderms.  相似文献   

16.
In Arenicola marina (Annelida, Polychaeta) the oocytes are arrested in the first prophase stage of meiosis until spawning. Oocyte maturation is under hormonal control: when incubated in vitro in a brain extract oocytes reach the first metaphase at which they remain arrested until fertilization. The importance of calcium in oocyte maturation has been investigated by using different drugs known to act on membrane calcium permeability and to modify intracellular free calcium concentration. Tetracaine, procaine, D-600, verapamil (Isoptin), propranolol, oxprenolol and lanthanum chloride, calcium deprivation but not ionophore A23187, are all able to induce oocyte maturation. This suggests that the brain hormone may act on the oocyte by regulating, probably increasing, the intracellular free calcium concentration, as it has been proposed for oocytes of other animals. The importance of -SH/-SS- in meiosis reinitiation is suggested by the fact that dithiothreitol and 2, 3-dimercaptopropanol, two disulfide reducing agents, both induce oocyte maturation.  相似文献   

17.
In vitro matured porcine oocytes were used to test the importance of protein synthesis for sperm penetration, the second meiotic division, and pronuclear development. Experiments were carried out to measure rates of protein synthesis in the presence of protein synthesis inhibitors (35 microM or 350 microM cycloheximide or a combination of inhibitors) (study 1); to test for sperm penetration and pronuclear development when protein synthesis was inhibited during fertilization (study 2); to test for oocyte meiosis, sperm penetration, and female and male pronuclear development when protein synthesis was inhibited during maturation (oocyte maturation in vitro with addition of inhibitor at 0, 24, or 36 hr of culture) (study 3); and to analyze the changes in the pattern of protein synthesis during these phases. Sperm penetration, oocyte meiosis, and female pronuclear development were not affected by the total inhibition of protein synthesis during fertilization. By contrast, inhibiting protein synthesis during maturation severely impaired the completion of meiosis and pronuclear development. Although inhibition of protein synthesis after 36 hr of maturation culture did not totally block male pronuclear development (MPN), the rate of MPN formation was lower than for controls (52% vs. 72%, P less than 0.05). However, protein synthesis was absolutely essential between 24 and 36 hr for the formation of MPN after decondensation. This period of maturation coincided with the dominant phase of protein reprogramming in the oocyte.  相似文献   

18.
The use of broad-spectrum inhibitors first suggested that phosphodiesterases (PDEs) are involved in the maturation of bovine oocytes. Modulation of individual PDE families is now possible with the use of newly developed type-specific PDE inhibitors. This study evaluated the role of type 3- and type 4-specific PDE inhibitors on the meiotic arrest of bovine cumulus-oocyte complexes (COCs) and denuded oocytes (DOs). It also evaluated the role of these specific inhibitors on meiotic arrest when COCs are incubated in the presence or absence of theca cell monolayers. Bovine COCs were aspirated from ovaries collected at the abattoir. Denuded oocytes and COCs were incubated for 12 h in culture medium alone or culture medium containing the type 3 PDE inhibitors cilostamide (10 and 20 microM) or milrinone (10 and 50 microM) or the type 4 PDE inhibitor rolipram (10 and 50 microM). Oocytes were then fixed and classified according to the status of nuclear maturation. Cumulus-oocyte complexes were coincubated with untreated theca cell monolayers or theca cell monolayers treated with the different specific PDE inhibitors. Bovine COCs or DOs incubated in culture medium resumed meiosis, but supplementation of the culture medium with the PDE3 inhibitors cilostamide or milrinone resulted in meiotic arrest. On the other hand, supplementation of the culture medium with rolipram did not prevent oocyte maturation. Furthermore, PDE3 inhibitors, but not PDE 4 inhibitors, had an additive effect on the inhibitory action of theca cell monolayers on oocyte maturation. These data support the hypothesis that inhibition of PDE3 prevents the meiotic resumption of bovine oocytes, whereas inhibition of PDE4 does not block oocyte maturation even under normally inhibitory conditions. The additive effect of PDE3 inhibitors on the ability of theca cells to maintain bovine oocytes in meiotic arrest suggests that type 3 PDE has an important role in meiotic resumption of bovine oocytes.  相似文献   

19.
In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The SALMFamide family is also known to an echinoderm neuropeptide. The present study examined effect of SALMFamide 1 (S1) on oocyte maturation of starfish Asterina pectinifera. Unlike GSS, S1 did not induce spawning in starfish ovary. In contrast, S1 was found to inhibit GSS secretion from radial nerves by treatment with high K+ concentration. Fifty percent inhibition was obtained by 0.1 mM S1. S1 did not have any effect on GSS- and 1-MeAde-induced oocyte maturation. Following incubation with a S1 antibody and subsequently with rhodamine-conjugated second antibody, neural networks were observed in ovaries. The networks were restricted mainly to their surface with little evidence of immunoreactivity inside the basement membranes. This indicates that neural networks are distributed in the ovarian wall. The result further suggests that S1 plays a role in oocyte maturation to regulate GSS secretion from the nervous system.  相似文献   

20.
Intracellular microinjection of alkaline Hepes-KOH buffers, which increases intracellular pH (pHI) from 6.92 to 7.70 in fully grown prophase-blocked oocytes of the starfish Marthasterias glacialis, like external application of ammonia and other weak bases (M. Doree, K. Sano, and H. Kanatani, 1982, Dev. Biol.90, 13–17), inhibited meiosis reinitiation induced by 1-methyladenine (1-MeAde) or dithiothreitol (DTT), a mimetic of the hormone. Oocytes could be released from inhibition by raising the concentration of hormone or of its mimetic. Increasing pHI to 7.70 neither inhibited nor delayed meiosis reinitiation when pH was clamped after the end of the hormone-dependent period, the period during which 1-MeAde is required in the external medium for meiosis to occur, whereas it blocked the action of the hormone at low concentration when performed before the end of the hormone-dependent period. When hormone concentration was higher, germinal vesicle breakdown (GVBD) occurred, but duration of the hormone-dependent period was increased. Delay introduced by alkalinization for oocytes to reach GVBD after 1-MeAde addition was smaller at high than at medium concentrations of the hormone. Increasing pHI did not inhibit action of MPF, the cytoplasmic maturation factor which induces GVBD and the subsequent process of meiotic maturation following hormonal treatment of prophase-blocked oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号