首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5′-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5′-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg2+ and a 5′-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2′-hydroxyls of the 5′ terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5′-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg2+ and a 5′-OH DNA yielded a mixed substrate-product complex with GTP-Mg2+ and 5′-PO4 DNA, wherein the product 5′ phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed.  相似文献   

2.
T4 polynucleotide kinase (Pnk) is the founding member of a family of 5'-kinase/3'-phosphatase enzymes that heal broken termini in RNA or DNA by converting 3'-PO(4)/5'-OH ends into 3'-OH/5'-PO(4) ends, which are then suitable for sealing by RNA or DNA ligases. Here we employed site-directed mutagenesis and biochemical methods to dissect the domain structure of the homotetrameric T4 Pnk protein and to localize essential constituents of the apparently separate active sites for the 5'-kinase and 3'-phosphatase activities. We characterized deletion mutants Pnk(42-301) and Pnk(1-181), which correspond to domains defined by proteolysis with chymotrypsin. Pnk(1-181) is a monomer with no 3'-phosphatase and low residual 5'-kinase activity. Pnk(42-301) is a dimer with no 5'-kinase and low residual 3'-phosphatase activity. Four classes of missense mutational effects were observed. (i) Mutations K15A, S16A, and D35A inactivated the 5'-kinase but did not affect the 3'-phosphatase or the tetrameric quaternary structure of T4 Pnk. 5'-kinase activity was ablated by the conservative mutations K15R, K15Q, and D35N; however, kinase activity was restored by the S16T change. (ii) Mutation D167A inactivated the 3'-phosphatase without affecting the 5'-kinase or tetramerization. (iii) Mutation D85A caused a severe decrement in 5'-kinase activity and only a modest effect on the 3'-phosphatase; the nearby N87A mutation resulted in a significantly reduced 3'-phosphatase activity and slightly reduced 5'-kinase activity. D85A and N87A both affected the quaternary structure, resulting in a mixed population of tetramer and dimer species. (iv) Alanine mutations at 11 other conserved positions had no significant effect on either 5'-kinase or 3'-phosphatase activity.  相似文献   

3.
We identify and characterize an end-healing enzyme, CthPnkp, from Clostridium thermocellum that catalyzes the phosphorylation of 5'-OH termini of DNA or RNA polynucleotides and the dephosphorylation of 2',3' cyclic phosphate, 2'-phosphate, and 3'-phosphate ribonucleotides. CthPnkp also catalyzes an autoadenylylation reaction via a polynucleotide ligase-type mechanism. These characteristics are consistent with a role in end-healing during RNA or DNA repair. CthPnkp is a homodimer of an 870-amino-acid polypeptide composed of three catalytic domains: an N-terminal module that resembles the polynucleotide kinase domain of bacteriophage T4 Pnkp, a central metal-dependent phosphoesterase module, and a C-terminal module that resembles the nucleotidyl transferase domain of polynucleotide ligases. The distinctive feature of CthPnkp vis-à-vis known RNA repair enzymes is that its 3' end modification component belongs to the calcineurin-type phosphatase superfamily. It contains putative counterparts of the amino acids that form the dinuclear metal-binding site and the phosphate-binding site of bacteriophage lambda phosphatase. As with lambda phosphatase, the 2',3' cAMP phosphatase activity of CthPnkp is specifically dependent on nickel or manganese. We identify homologs of CthPnkp in other bacterial proteomes.  相似文献   

4.
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5′ end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from an NTP donor to a 5′-OH polynucleotide acceptor. Here we report the crystal structures of CthPnk-D38N in a Michaelis complex with GTP•Mg2+ and a 5′-OH oligonucleotide and a product complex with GDP•Mg2+ and a 5′-PO4 oligonucleotide. The O5′ nucleophile is situated 3.0 Å from the GTP γ phosphorus in the Michaelis complex, where it is coordinated by Asn38 and is apical to the bridging β phosphate oxygen of the GDP leaving group. In the product complex, the transferred phosphate has undergone stereochemical inversion and Asn38 coordinates the 5′-bridging phosphate oxygen of the oligonucleotide. The D38N enzyme is poised for catalysis, but cannot execute because it lacks Asp38—hereby implicated as the essential general base catalyst that abstracts a proton from the 5′-OH during the kinase reaction. Asp38 serves as a general acid catalyst during the ‘reverse kinase’ reaction by donating a proton to the O5′ leaving group of the 5′-PO4 strand. The acceptor strand binding mode of CthPnk is distinct from that of bacteriophage T4 Pnk.  相似文献   

5.
Polynucleotide kinase-phosphatase (Pnkp) from Clostridium thermocellum catalyzes ATP-dependent phosphorylation of 5'-OH termini of DNA or RNA polynucleotides and Ni(2+)/Mn(2+)-dependent dephosphorylation of 2',3' cyclic phosphate, 2'-phosphate, and 3'-phosphate ribonucleotides. CthPnkp is an 870-amino-acid polypeptide composed of three domains: an N-terminal module similar to bacteriophage T4 polynucleotide kinase, a central module that resembles the dinuclear metallo-phosphoesterase superfamily, and a C-terminal ligase-like adenylyltransferase domain. Here we conducted a mutational analysis of CthPnkp that identified 11 residues required for Ni(2+)-dependent phosphatase activity with 2'-AMP and 3'-AMP. Eight of the 11 CthPnkp side chains were also required for Ni(2+)-dependent hydrolysis of p-nitrophenyl phosphate. The ensemble of essential side chains includes the conserved counterparts (Asp187, His189, Asp233, Arg237, Asn263, His264, His323, His376, and Asp392 in CthPnkp) of all of the amino acids that form the dinuclear metal-binding site and the phosphate-binding site of bacteriophage lambda phosphatase. Three residues (Asp236, His264, and Arg237) required for activity with 2'-AMP or 3'-AMP were dispensable for Ni(2+)-dependent hydrolysis of p-nitrophenyl phosphate. Our findings, together with available structural information, provide fresh insights to the metallophosphoesterase mechanism, including the roles of His264 and Asp236 in proton donation to the leaving group. Deletion analysis defined an autonomous phosphatase domain, CthPnkp-(171-424).  相似文献   

6.
7.
Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).  相似文献   

8.
Polynucleotide kinase from E. coli infected with the PseT 1 mutant of bacteriophage T4 has been isolated. The PseT 1 enzyme purifies similarly to normal polynucleotide kinase and effectively transfers the gamma phosphate of ATP to the 5' terminal hydroxyl of DNA and RNA. The PseT 1 and normal enzymes require similar magnesium ion concentrations, have the same pH optima and are both inhibited by inorganic phosphate. However, the PseT 1 enzyme is totally lacking the 3' phosphatase activity associated with normal polynucleotide kinase. The PseT 1 enzyme is a useful tool for the preparation of oligonucleotides with 3' and 5' terminal phosphates for use as susbstrates for RNA ligase.  相似文献   

9.
T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5′-kinase and 3′-phosphatase activities that function in nucleic acid repair. The N-terminal kinase domain belongs to the P-loop phosphotransferase superfamily. The kinase is distinguished by a tunnel-like active site with separate entrances on opposite sides of the protein for the NTP phosphate donor and a 5′-OH single-stranded oligonucleotide phosphate acceptor. Here, we probed by mutagenesis the roles of individual amino acids that comprise the acceptor binding site. We thereby identified Glu57 as an important residue, by virtue of its participation in a salt bridge network with two catalytic residues identified previously: Arg38, which binds the 3′-phosphate of the terminal 5′-OH nucleotide, and the putative general base Asp35 that contacts the nucleophilic 5′-OH group. The 5′-OH nucleoside fits into a pocket lined by aliphatic amino acids (Val131, Pro132 and Val135) that make van der Waals contacts to the nucleobase. Whereas subtraction of these contacts by single alanine substitutions for Val131 or Val135 and glycine for Pro132 had modest effects on kinase activity, the introduction of bulkier phenylalanines for Val131 and Val135 were deleterious, especially V131F, which severely impeded both substrate binding (increasing Km by 15-fold) and catalysis (decreasing kcat by 300-fold).  相似文献   

10.
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3-A resolution. RNase PH has the typical alpha/beta fold, which forms a hexameric ring structure as a trimer of dimers. This ring structure resembles that of the polynucleotide phosphorylase core domain homotrimer, another phosphorolytic exoribonuclease. Four amino acid residues, Arg-86, Gly-124, Thr-125, and Arg-126, of RNase PH are involved in the phosphate-binding site. Mutational analyses of these residues showed their importance in the phosphorolysis reaction. A docking model with the tRNA acceptor stem suggests how RNase PH accommodates substrate RNAs.  相似文献   

11.
Bacteriophage T4 RNase H, a flap endonuclease-1 family nuclease, removes RNA primers from lagging strand fragments. It has both 5' nuclease and flap endonuclease activities. Our previous structure of native T4 RNase H (PDB code 1TFR) revealed an active site composed of highly conserved Asp residues and two bound hydrated magnesium ions. Here, we report the crystal structure of T4 RNase H in complex with a fork DNA substrate bound in its active site. This is the first structure of a flap endonuclease-1 family protein with its complete branched substrate. The fork duplex interacts with an extended loop of the helix-hairpin-helix motif class 2. The 5' arm crosses over the active site, extending below the bridge (helical arch) region. Cleavage assays of this DNA substrate identify a primary cut site 7-bases in from the 5' arm. The scissile phosphate, the first bond in the duplex DNA adjacent to the 5' arm, lies above a magnesium binding site. The less ordered 3' arm reaches toward the C and N termini of the enzyme, which are binding sites for T4 32 protein and T4 45 clamp, respectively. In the crystal structure, the scissile bond is located within the double-stranded DNA, between the first two duplex nucleotides next to the 5' arm, and lies above a magnesium binding site. This complex provides important insight into substrate recognition and specificity of the flap endonuclease-1 enzymes.  相似文献   

12.
We report the characterization of Pnk1, a 45-kDa homolog of the human polynucleotide kinase PNKP in Schizosaccharomyces pombe. Recombinant Pnk1 like human PNKP exhibits both 5'-DNA kinase and 3'-DNA phosphatase activities in vitro. Furthermore, we detected 3'-DNA phosphatase activity with a single-stranded substrate in extracts from wild-type yeast, but no activity was detected in pnk1delta strains. We have shown that GFP-tagged Pnk1 like mammalian PNKP localizes to the nucleus. Deletion of pnk1 does not affect cell growth under normal conditions but results in significant hypersensitivity to gamma-radiation or camptothecin, an inhibitor of topoisomerase I, suggesting that Pnk1 plays an important role in the repair of DNA strand breaks produced by these agents. The pnk1 deletion mutants were not hypersensitive to ethyl methanesulfonate, methyl methanesulfonate, or 4-nitroquinoline N-oxide. Expression of human PNKP in pnk1delta cells restores resistance to gamma-radiation or camptothecin, suggesting that the functions of yeast Pnk1 and human PNKP have been conserved.  相似文献   

13.
2-Azidoadenosine was synthesized from 2-chloroadenosine by sequential reaction with hydrazine and nitrous acid and then bisphosphorylated with pyrophosphoryl chloride to form 2-azidoadenosine 3',5'-bisphosphate. The bisphosphate was labeled in the 5'-position using the exchange reaction catalyzed by T4 polynucleotide kinase in the presence of [gamma-32P]ATP. Polynucleotide kinase from a T4 mutant which lacks 3'-phosphatase activity (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) was required to facilitate this reaction. 2-Azidoadenosine 3',5'-[5'-32P]bisphosphate can serve as an efficient donor in the T4 RNA ligase reaction and can replace the 3'-terminal adenosine of yeast tRNAPhe with little effect on the amino acid acceptor activity of the tRNA. In addition, we show that the modified tRNAPhe derivative can be photochemically cross-linked to the Escherichia coli ribosome.  相似文献   

14.
T4 phage polynucleotide kinase (PNK) was identified over 35 years ago and has become a staple reagent for molecular biologists. The enzyme displays 5'-hydroxyl kinase, 3'-phosphatase, and 2',3'-cyclic phosphodiesterase activities against a wide range of substrates. These activities modify the ends of nicked tRNA generated by a bacterial response to infection and facilitate repair by T4 RNA ligase. DNA repair enzymes that share conserved motifs with PNK have been identified in eukaryotes. PNK contains two functionally distinct structural domains and forms a homotetramer. The C-terminal phosphatase domain is homologous to the L-2-haloacid dehalogenase family and the N-terminal kinase domain is homologous to adenylate kinase. The active sites have been characterized through structural homology analyses and visualization of bound substrate.  相似文献   

15.
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5′ kinase, a central 2′,3′ phosphatase and a C-terminal ligase. The phosphatase module is a Mn2+-dependent phosphodiesterase–monoesterase that dephosphorylates 2′,3′-cyclic phosphate RNA ends. Here we report the crystal structure of the phosphatase domain of Clostridium thermocellum Pnkp with Mn2+ and citrate in the active site. The protein consists of a core binuclear metallo-phosphoesterase fold (exemplified by bacteriophage λ phosphatase) embellished by distinctive secondary structure elements. The active site contains a single Mn2+ in an octahedral coordination complex with Asp187, His189, Asp233, two citrate oxygens and a water. The citrate fills the binding site for the scissile phosphate, wherein it is coordinated by Arg237, Asn263 and His264. The citrate invades the site normally occupied by a second metal (engaged by Asp233, Asn263, His323 and His376), and thereby dislocates His376. A continuous tract of positive surface potential flanking the active site suggests an RNA binding site. The structure illuminates a large body of mutational data regarding the metal and substrate specificity of Clostridium thermocellum Pnkp phosphatase.  相似文献   

16.
T4 polynucleotide kinase (Pnk) is a bifunctional 5′-kinase/3′-phosphatase that aids in the repair of broken termini in RNA by converting 3′-PO4/5′-OH ends into 3′-OH/5′-PO4 ends, which are then sealed by RNA ligase. Here we have employed site-directed mutagenesis (introducing 31 mutations at 16 positions) to locate candidate catalytic residues within the 301 amino acid Pnk polypeptide. We found that alanine substitutions for Arg38 and Arg126 inactivated the 5′-kinase, but spared the 3′-phosphatase activity. Conservative substitutions of lysine or glutamine for Arg38 and Arg126 did not restore 5′-kinase activity. These results, together with previous mutational studies, highlight a constellation of five amino acids (Lys15, Ser16, Asp35, Arg38 and Arg126) that likely comprise the 5′-kinase active site. Four of these residues are conserved at the active sites of adenylate kinases (Adk), suggesting that Pnk and Adk are structurally and mechanistically related. We found that alanine substitutions for Asp165, Asp167, Arg176, Arg213, Asp254 and Asp278 inactivated the 3′-phosphatase, but spared the 5′-kinase. Conservative substitutions of asparagine or glutamate for Asp165, Asp167 and Asp254 did not revive the 3′-phosphatase activity, nor did lysine substitutions for Arg176 and Arg213. Glutamate in lieu of Asp278 partially restored activity, whereas asparagine had no salutary effect. Alanine substitutions for Arg246 and Arg279 partially inactivated the 3′-phosphatase; the conservative R246K change restored activity, whereas R279K had no benefit. The essential phosphatase residues Asp165 and Asp167 are located within a 165DxDxT169 motif that defines a superfamily of phosphotransferases. Our data suggest that the 3′-phosphatase active site incorporates multiple additional functional groups.  相似文献   

17.
Rat liver chromatin contains a 3'-phosphatase/5'-OH kinase which may be involved in the repair of DNA strand breaks limited by 3'-phosphate/5'-OH ends. In order to determine whether the phosphate group can be transferred directly from the 3' to the 5' position, a polynucleotide duplex was synthesized between poly (dA) and oligo (dT) segments which had 3'-[32P]phosphate and 5'-OH ends. The oligo (dT) segments were separated by simple nicks as shown by the ability of T4 DNA ligase to seal the nick after the 3'-phosphate was removed by a phosphatase and the 5' end was phosphorylated with a kinase. The chromatin 3'-phosphatase/5'-OH kinase was unable to transfer phosphate directly from the 3' to the 5' end of the oligo (dT) segments in the original duplex; ATP was needed to phosphorylate the 5'-OH end. It is concluded that the chromatin 3'-phosphatase/5'-OH kinase is unable to convert a 3'-phosphate/5'-OH nick which cannot be repaired by DNA ligase directly into a 3'-OH/5'-phosphate nick which can be repaired by DNA ligase; the chromatin enzyme rather acts in two steps: hydrolysis of the 3'-phosphate followed by ATP-mediated phosphorylation of the 5'-OH end.  相似文献   

18.
End group labelling of sheared double-stranded DNA, and tRNA has been effected without prior dephosphorylation, utilizing the reversal of T4 polynucleotide kinase activity. Incubation of DNA with polynucleotide kinase in the presence and absence of a phosphate acceptor (ADP) allowed the determination of the relative ratio of 5′ hydroxyl and 5′ phosphoryl terminii in the polynucleotide. This method of analysis has demonstrated a high preference in the formation of 5′ vs 3′ phosphomonoesters during high pressure shearing of double stranded DNA.  相似文献   

19.
Pre-existing host tRNAs are reprocessed during bacteriophage T4 infection of certain Escherichia coli strains. In this pathway, tRNALys is cleaved 5' to the wobble base by anticodon nuclease and is later restored in polynucleotide kinase and RNA ligase reactions. Anticodon nuclease depends on prr, a locus found only in host strains that restrict T4 mutants lacking polynucleotide kinase and RNA ligase; and on stp, the T4 suppressor of prr restriction. stp was cloned and the nucleotide sequences of its wild-type and mutant alleles determined. Their comparison defined an stp open reading frame of 29 codons at 162.8 to 9 kb of T4 DNA (1 kb = 10(3) base-pairs). We suggest that stp encodes a subunit of anticodon nuclease, perhaps one that harbors the catalytic site; while additional subunits, such as a putative prr gene product, impart protein folding environment and tRNA substrate recognition.  相似文献   

20.
The specificity of casein kinase II has been further defined by analyzing the kinetics of phosphorylation reactions using a number of different synthetic peptides as substrates. The best peptide substrates are those in which multiple acidic amino acids are present on both sides of the phosphorylatable serine or threonine. Acidic residues on the NH2-terminal side of the serine (threonine) greatly enhance the kinetic constants but are not absolutely required. Acidic residues on the COOH-terminal side of the serine (threonine) are absolutely required. One position for which the occupation of an acidic residue is especially critical is the position located 3 residues to the COOH terminus of the phosphate acceptor site, although the presence of an acidic amino acid in the positions that are 4 or 5 residues removed may also provide an appropriate structure that will serve as a substrate for the kinase. Aspartate serves as a better amino acid determinant than glutamate. A relatively short sequence of amino acids surrounding the phosphate acceptor site appears to serve as the basis for the specificity of casein kinase II. The peptides in this study were also assayed with casein kinase I and the casein kinase from the mammary gland so that the specificities of these kinases could be compared to that of casein kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号