首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study was undertaken to further characterize the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata in the central processing of nociceptive and cardiovascular signals, and its modulation by metenkephalin. In Sprague-Dawley rats anesthetized with pentobarbital sodium, we found that all 125 spontaneously active NRGC neurons that responded to noxious stimuli (tail clamp) also exhibited arterial pressure-relatedness. Forty neurons additionally manifested cardiac periodicity that persisted even during nociceptive responses. While maintaining their cardiovascular responsive characteristics, the nociception-related NRGC neuronal activity was blocked, naloxone-reversibly (0.5 mg/kg, i.v.), by morphine (5 mg/kg, i.v.). Microiontophoretically applied met-enkephalin suppressed the responsiveness of NRGC neurons to individually delivered tail clamp or transient hypertension induced by phenylephrine (5 µg/kg, i.v.). Interestingly, in NRGC neurons that manifested both nociception and arterial pressure relatedness, the preferential reduction in the response to noxious stimuli upon simultaneous elevation in systemic arterial pressure was reversed to one that favored nociception in the presence of met-enkephalin. All actions of met-enkephalin were discernibly blocked by the opioid receptor antagonist, naloxone. Our results suggest that individual NRGC neurons may participate in the processing of both nociceptive and cardiovascular information, or in the coordination of the necessary circulatory supports during nociception. In addition, neuropeptides such as met-enkephalin may exert differential modulation on neuronal responsiveness according to the prevailing physiologic status of the animal. They also showed that NRGC may be a central integrator for pain and cardiovascular-related functions.  相似文献   

2.
Studies on the presence of angiotensin II in rat brain   总被引:1,自引:3,他引:1  
Abstract: Angiotensin II-like immunoreactivity was extracted from brains of bilaterally nephrectomized rats with several different extraction procedures (90% methanol, distilled water, 6 M urea, 0.1 N HCI, and 2 M acetic acid). The activity was measured with radioimmunoassays using three different antisera, two of which had been used previously for immunocytochemical studies. With none of the extraction procedures or antisera employed was more than 80 pg/g wet weight of angiotensin II-like immunoreactivity found. Analysis was undertaken with two different reverse-phase high-pressure liquid chromatography systems; in one of these the immunoreactivity did not coelute with angiotensin II or III. On the basis of its elution pattern from a molecular sieving column, the immunoreactivity seems to have a higher molecular weight than angiotensin II. It is concluded that neurons in the brain do not synthesize and store angiotensin II.  相似文献   

3.
The Met-enkephalin contents in the dorsal horn of the lumbar enlargement and the nucleus reticularis gigantocellularis of the medulla oblongata of the rat were measured, using a sensitive and specific radioimmunoassay for Met-enkephalin, and the effects of morphine and noxious stimuli on the Met-enkephalin contents in these regions were examined. In this radioimmunoassay, the IC50 and assayable limits for Met-enkephalin were 45 and 5 fmol/tube respectively, and the IC50 for Leuenkephalin was 0.56 nmol/tube (0.008% cross reactivity between Met- and Leu-enkephalins). The contents of Met-enkephalin-like immunoreactivity in the dorsal horn of the lumbar enlargement and the nucleus reticularis gigantocellularis were not altered by either subcutaneous injection of morphine or thermal (hot plate) and chemical (formalin injection) noxious stimuli applied to the hind-paws.  相似文献   

4.
An earlier study showed that des-aspartate-angiotensin I (DAA-I) attenuated the pressor action of angiotensin III in aortic rings of the spontaneously hypertensive rat (SHR) but not the normotensive Wistar Kyoto (WKY) rat. The present study investigated similar properties of DAA-I in isolated perfused kidneys and mesenteric beds of WKY and SHR. In the renal vasculature, angiotensin III induced a dose-dependent pressor response, which was more marked in the SHR than WKY in terms of significant greater magnitude of response and lower threshold. DAA-I attenuated the pressor action of angiotensin III in both the WKY and SHR. The attenuation in SHR was much more marked, occurring at doses as low as 10−15 M DAA-I, while effective attenuation was only seen with 10−9 M in WKY. The effects of DAA-I was not inhibited by PD123319 and indomethacin, indicating that its action was not mediated by angiotensin AT2 receptors and prostaglandins. However, the direct pressor action of angiotensin III in the SHR but not the WKY was attenuated by indomethacin suggesting that this notable difference could be due to known decreased response of renal vasculature to vasodilator prostaglandins in the SHR. Pressor responses to angiotensin III in the mesenteric vascular bed was also dose dependent, but smaller in magnitude compared to the renal response. The responses in the SHR, though generally smaller, were not significantly different from those of the WKY. This trend is in line with the similar observations with angiotensin III and II by other investigators. In terms of the effect of DAA-I, indomethacin and PD123319 on angiotensin III action, similar patterns to those of the renal vasculature were observed. This reaffirms that in the perfused kidney and mesenteric bed, where the majority of the vessels are contractile, femtomolar concentrations of DAA-I attenuates the pressor action of angiotensin III. The attenuation is not indomethacin sensitive and does not involve the angiotensin AT2 receptor. The findings suggest that DAA-I possesses protective vascular actions and is involved in the pathophysiology of hypertension.  相似文献   

5.
It has been suggested that low concentrations of angiotensin II cause vasoconstriction whereas high concentrations evoke vasodilation. Thus, this work aimed to functionally characterize the mechanisms underlying the relaxation induced by angiotensin II at high concentrations in isolated rat carotid rings. Experiments using standard muscle bath procedures showed that angiotensin II (0.01-3 μM) concentration dependently induces relaxation of phenylephrine-pre-contracted rings. No differences between intact or denuded endothelium were found. The angiotensin II-induced relaxation was strongly inhibited by saralasin, the non-selective antagonist of angiotensin II receptors but not by the selective antagonists of AT1 and AT2 receptors, losartan and PD123319, respectively. However, A-779, a selective angiotensin-(1-7) receptor antagonist, reduced the relaxation induced by angiotensin II. Administration of exogenous angiotensin-(1-7) on pre-contracted tissues produced concentration-dependent relaxation, which was also inhibited by A-779. HOE-140, the selective antagonist of the bradykinin in B2 receptor did not produce any significant effect on angiotensin II-induced relaxation. Pre-incubation of denuded-rings with N G-nitro-l-arginine methyl ester (l-NAME) or 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reduced angiotensin II-induced relaxation. On the other hand, neither indomethacin nor tetraethylammonium (TEA) produced any significant effect. The major new finding of this work is that high concentrations of angiotensin II induce relaxation of the rat carotid via activation of the NO-cGMP pathway through a mechanism that seems to be partially dependent on activation of angiotensin-(1-7) receptors.  相似文献   

6.
7.
Dynamics of neuronal interaction recorded by microelectrodes were examined in 90 arrays of cells of the human thalamic reticular nucleus (Rt) during stereotaxic surgical procedures. Cooperative interaction between adjacent neurons was found to occur in neuronal arrays after presentation of verbal (or sensory-cum-acoustic) functionally significant stimulus (FSS) as well as at stages of initiation and performance of goal-directed movement. Specialized dynamics were noted in the pattern of interaction between neuronal arrays of two types (A and B) with irregular background activity and 2–5 Hz bursting rhythm (types A and B respectively). This dynamic local neuronal interaction correlates with the stage of significant verbal stimulus presentation and that of performing goal-directed movements. The matching transient correlation between activity of A and B cell arrays reflects matching operation of two sequences of regulatory and control processes involved in processing of functionally significant verbal (or sensory) information and performance of goal-directed movement.Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow Institute of Neurosurgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 451–459, June–July, 1990.  相似文献   

8.
We examined the physiologic role of endogenous brain angiotensin III (AIII), an active degradative product of angiotensin II, in drinking behavior. Adult, male spontaneously hypertensive (SH) and Wistar-Kyoto normotensive (WKY) rats that were instrumented with an intracerebroventricular (i.c.v.) cannula connected to an osmotic minipump for chronic infusion were used. 7-day i.c.v. infusion of the specific AIII antagonist, Ile7-AIII (10 or 100 pmol/min), resulted in no significant alteration in daily (24 h), diurnal (8:00 a.m.-8:00 p.m.) or nocturnal (8:00 p.m.-8:00 a.m.) basal water intake in both SH and WKY rats. Similar results were obtained with i.c.v. infusion of the aminopeptidase inhibitor, bestatin (150 or 300 pmol/min), given alone or simultaneously with Ile7-AIII (10 pmol/min). Rats that were water-deprived for the first 3 days of 7-day infusion of Ile7-AIII consumed significantly less water during the first 2 h after water became available. Furthermore, the accumulated water intake during the first 24 h was appreciably greater in SH than WKY rats. We interpret these results to suggest that the endogenous brain AIII may not be tonically involved in fluid homeostasis. Instead, it must be activated under conditions of dehydration, such as water deprivation, particularly in the SHRs, to initiate drinking behavior.  相似文献   

9.

1. Impulse activity of phasically firing (bursting) paraventricular neurons, which are assumed to be of the vasopressinergic type, have been extracellularly recorded in brain slices of the rat.

2. Analysis of burst patterns during temperature changes, angiotensin II application and combined application of both stimuli demonstrated that certain burst parameters are effected much stronger than the mean firing rate and also for a longer period of time.

3. The most sensitive parameter was the intraburst frequency which is considered to be the most effective parameter for increased vasopressin release.

4. These data indicate that there are functionally relevant changes in the impulse patterns which are not necessarily manifested in the mean firing rate.

Author Keywords: Hypothalamus; Paraventricular nucleus; PVN; Vasopressin; AVP; Angiotensin II; Neuronal temperature sensitivity; Osmoregulation; Phasic activity; Burst; Impulse pattern; Neuromodulation; Neuronal interactions; In vitro; Rat  相似文献   


10.
Summary The localization of vasopressin, serotonin and angiotensin II in the endothelial cells of renal and mesenteric arteries was investigated using the pre-embedding peroxidase-antiperoxidase technique for electron microscopy. Vasopressin-and serotonin-positive endothelial cells were present in both renal and mesenteric arteries while angiotensin II-positive cells were observed in the mesenteric artery exclusively. Both arteries showed less than 10% immunoreactive cells. The lack of angiotensin II in the endothelial cells of the renal artery suggests that there may be subtle physiological differences between the renal and mesenteric arteries with respect to the local control of blood flow.  相似文献   

11.
Previous studies have suggested that angiotensin II, a hormone known to regulate water and salt balance and blood pressure, may also regulate oxygen consumption and body temperature. In this study we investigated the role of endogenous angiotensin in the regulation of oxygen consumption and colonic temperature in rats under low (control) and high (water deprivation, administration of isoproterenol and hemorrhage) peripheral angiotensin conditions. Peripheral administration of losartan, an AT1 receptor antagonist or enalapril, an angiotensin converting enzyme inhibitor, did not alter oxygen consumption or colonic temperature in control or water deprived rats. Peripheral administration of losartan did not alter the oxygen consumption and colonic temperature responses to the administration of isoproterenol or hemorrhage. Endogenous peripherally generated angiotensin II does not play an important role in regulating either oxygen consumption or colonic temperature in rats under either low or high angiotensin II levels. The reductions in oxygen consumption and colonic temperature that accompany hemorrhage in rats are not mediated by angiotensin II.  相似文献   

12.
In nucleus tractus solitarii-dorsal vagal nucleus slices prepared from young adult rats (180-260 g) 10(-3) M L-glutamate and 10(-5) M baclofen caused a 2-3-fold increase of field stimulation-induced [3H]-norepinephrine release without affecting the resting release. In slices prepared from rats treated neonatally with monosodium glutamate neither L-glutamate nor baclofen had any effect on stimulation-induced norepinephrine release, tested between postnatal days 74-99 (350-530 g). In untreated littermates used in the same period (460-580 g) L-glutamate was fully effective whereas baclofen was ineffective. The tritium content in tissue extracts did not differ significantly in the three experimental groups. It is concluded that i) the loss of GABA(B) receptor-mediated disinhibitory stimulation of norepinephrine release is an age-related phenomenon and ii) neonatal monosodium glutamate treatment causes a damage in the local neural circuitry characterized by the loss of glutamate receptor-mediated mechanism that stimulates the release of norepinephrine.  相似文献   

13.
The present investigation determined that native angiotensins II and III (ANG II and III) were equipotent as pressor agents when ICV infused in alert rats, whereas native angiotensin IV (ANG IV) was less potent. An analogue of each of these angiotensins was prepared with a hydroxyethylamine (HEA) amide bond replacement at the N-terminus, yielding additional resistance to degradation. These three angiotensin analogues, HEA-ANG II, HEA-ANG III, and HEA-ANG IV, were equivalent with respect to maximum elevation in pressor responses when ICV infused; and each evidenced significantly extended durations of effect compared with their respective native angiotensin. Comparing analogues, HEA-ANG II had a significantly longer effect compared with HEA-ANG III, and HEA-ANG IV, whereas the latter were equivalent. Pretreatment with the AT1 receptor subtype antagonist, Losartan (DuP753), blocked subsequent pressor responses to each of these analogues, suggesting that these responses were mediated by the AT1 receptor subtype. Pretreatment with the specific AT4 receptor subtype antagonist, Divalinal (HED 1291), failed to influence pressor responses induced by the subsequent infusion of these analogues. These results suggest an important role for Ang III, and perhaps ANG IV, in brain angiotensin pressor responses mediated by the AT1 receptor subtype.  相似文献   

14.
Satou R  Nakagawa T  Ido H  Tomomatsu M  Suzuki F  Nakamura Y 《Peptides》2005,26(12):2452-2457
Angiotensin III (Ang III) as well as angiotensin II (Ang II) suppressed body weight loss of the clam worm Perinereis sp. under a hyper-osmotic condition, and enhanced body weight gain under a hypo-osmotic condition. Under a drying condition where the water inflow from outside the body was eliminated, Ang II suppressed body weight loss, but Ang III did not. Under these conditions, angiotensins I, IV, and (1–7) had no effect, and saralasin blocked the effects of Ang II and Ang III. It is concluded that Ang II and Ang III upregulate body fluid volume of the clam worm via Ang II receptors in different ways.  相似文献   

15.
The interactive role of rostral ventrolateral medulla (RVL) cardiovascular neurons and brain angiotensin II (Ang II) in regulating the arterial blood pressure was examined by recording simultaneously the spontaneous activity of these spinal projecting neurons and the arterial blood pressure in the pentobarbital-anesthetized spontaneously hypertensive rat (SHR) and its normotensive control, the Wistar Kyoto rat (WKY). It was found that Ang II elicited dose-dependent excitatory responses in a subpopulation of RVL cardiovascular neurons, followed by a subsequent increase in blood pressure. These effects of Ang II were significantly greater in SHR than in WKY. The effects were attenuated or abolished by co-administration of Ang II antagonist, [Sar1, Ile8]-Ang II. Pre-administration of [Sar1, Ile8]-Ang II to RVL using bilateral microinjection attenuated the blood pressure effects of intracerebroventricularly administered Ang II by as much as 70%. These results indicated that spinal projecting RVL cardiovascular neurons are important in mediating the pressor action of Ang II. The enhanced sensitivity and responsiveness of RVL cardiovascular neurons to Ang II may be pertinent to the genesis of hypertension in adult SHR.  相似文献   

16.
Most sympathetic neurons contain one or more neuropeptides in addition to catecholamines. Although the regulation of catecholamines has been studied extensively, comparatively little is known about the regulation of neuropeptides. Since glucocorticoids and preganglionic innervation regulate catecholaminergic properties in chromaffin cells, we examined the effects of these factors on a co-localized neuropeptide, leucine enkephalin (L-Enk), in adult rat sympathetic neurons in vivo. Lowered serum glucocorticoid levels as a consequence of bilateral adrenalectomy resulted in a reduction of ganglionic L-Enk content that was reversed by exposure of adrenalectomized animals to the synthetic glucocorticoid, dexamethasone. Surgical denervation of the SCG eliminated L-Enk-IR preganglionic fibers and caused a dramatic increase in the number of L-Enk-IR neurons. Inhibition of the enkephalinergic component of the preganglionic innervation by chronic exposure to the opiate receptor antagonist naloxone increases the number of L-Enk-IR cell bodies and total ganglionic L-Enk content. None of the experimental manipulations noticeably altered the number or distribution of NPY-IR neurons, suggesting that the effects of glucocorticoids and the innervation on ganglionic L-Enk levels were specific and not simply an alteration of the biosynthetic state of the cells. These results demonstrate that circulating glucocorticoids and the preganglionic innervation regulate L-Enk levels in sympathetic neurons. Since both glucocorticoid levels and preganglionic activity are known to be altered by stressful stimuli, acute regulation of sympathetic L-Enk levels may constitute an important component of the autonomic response to stress. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Orexin, which is mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), plays an important role in pain modulation. Both kinds of orexin-1 (Ox1) and orexin-2 (Ox2) receptors have been found at high density in the ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the quantity of Ox1 receptors in the VTA is more than that in the NAc. Additionally, it seems that the functional interaction between the LH, VTA and NAc implicates pain processing and modulation. In this study, we tried to examine the involvement of Ox2 receptors in the NAc and VTA using tail-flick test as an animal model of acute pain following microinjection of effective dose of carbachol (125 nmol/0.5 μl saline) into the LH. In this set of experiments, different doses of TCS OX2 29 as an Ox2 receptor antagonist were microinjected into the VTA (1, 7 and 20 nmol/0.3 μl DMSO) and the NAc (2, 10, 20 and 40 nmol/0.5 μl DMSO) 5 min prior to carbachol administration. Administration of TCS OX2 29 into the VTA and NAc dose-dependently blocked intra-LH carbachol-induced antinociception. However, the inhibitory effect of TCS OX2 29 as an Ox2 receptor antagonist was more potent in the VTA than that in the NAc. It seems that VTA orexinergic receptors are more effective on LH stimulation-induced antinociception and the modulation of pain descending inhibitory system originated from the LH than those of the same receptors in the nucleus accumbens in rats.  相似文献   

18.
Angiotensin II, the principal effector of the renin-angiotensin system, modulates various ionic currents. Its effects on potassium currents, including outward transient potassium current, the inward or outward rectifiers, as well as Ca2+-activated potassium currents, is well described. Other ionic currents, such as voltage-dependent calcium currents, cationic or chloride currents, are also altered by the hormone. All these effects provoke changes in membrane potential, such as modulation of action potential firing or resting membrane potential and control intracellular calcium concentration. Summarized here are the results obtained on these membrane electrical properties using electrophysiological recordings.  相似文献   

19.
The effects of peptide and non-peptide angiotensin II receptor antagonists on the responses to angiotensin II were examined using aortic rings and skin isolated from the toad. The contractile responses of aortic rings to (Ala-Pro-Gly) angiotensin II were inhibited by the angiotensin II analogue Leu8 angiotensin II, with a pA2 value of 7.6. Similarly, the concentration response curve for (Ala-Pro-Gly) angiotensin II was displaced to the right by the specific angiotensin receptor subtype antagonist DuP 753, with a pA2 value of 6.0. In contrast, the angiotensin receptor subtype 2 antagonists PD 123177 and CGP 42112A did not modify the contractile response to (Ala-Pro-Gly) angiotensin II. None of the antagonists was able to alter the contractile response to norepinephrine. Both Leu8 angiotensin II (10-8 mol·l-1) and DuP 753 (10-6 mol·l-1) partially inhibited angiotensin III-induced contractions in toad aorta. Angiotensin III, in turn, exhibited lower activity than [Asn1-Val5] angiotensin II in this preparation, its molar potency ratio being 0.293. Previous work from this laboratory reported that osmotic water permeability in the skin of the toad Bufo arenarum was increased by angiotensin II, the effect being blocked by the peptide antagonist Leu8 angiotensin II. The hydrosmotic response to [Asn1-Val5] angiotensin II (10-7 mol·l-1) was significantly inhibited by DuP 753 (10-6 and 5×10-6 mol·l-1), whereas the response was not inhibited by a tenfold higher concentration of either PD 123177 or CGP 42112A. DuP 753 (10-6 mol·l-1) also inhibited the hydrosmotic response to angiotensin III (10-7 mol·l-1). These results suggest that receptors for angiotensin II present in isolated toad aorta and skin exhibit pharmacological features similar to those characterized as angiotensin subtype 1 in mammalian tissues.Abbreviations AT 1 angiotensin receptor subtype 1 - AT 2 angiotensin receptor subtype 2 - AT II angiotensin II - AT III angiotensin III - CDRC cumulative doseresponse curve(s) - NE norepinephrine - SCC short-circuit current  相似文献   

20.
Using the blue crab Callinectes sapidus as a model system, we have investigated the effects of potential neuromodulators on freely behaving animals. Of interest is the modulatory effect of a number of drugs on three rhythmic behaviors of the blue crab: courtship display (CD) of the male crab, sideways swimming and backward swimming. The drugs tested were proctolin, dopamine, octopamine, serotonin, and norepinephrine. Injection of each drug elicited a unique posture or combination of limb movements. These experiments showed two results pertinent to CD behavior: A posture identical to the CD posture was displayed after dopamine injection; and rhythmic leg waving similar to CD was evoked by proctolin. An unusual combination of flexion and extension of all limbs and movements of some limbs occurred after serotonin injection. Injection of octopamine led to a posture antagonistic to CD posture. The effects of these drugs were concentration- and time-dependent. Injection of dopamine, octopamine, or serotonin produced effects that were seasonally-dependent, and the influence of proctolin proved to be dependent on developmental stage. Quantitative analysis of leg waving movements after proctolin injection allowed for comparison of these movements to naturally-occurring behavior.Abbreviations CD courtship display - DA dopamine - OA octopamine - 5-HT serotonin - NE norepinephrine - PROC proctolin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号