首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quality control in the endoplasmic reticulum (ER) prevents the arrival of incorrectly or incompletely folded proteins at their final destinations and targets permanently misfolded proteins for degradation. Such proteins have a high affinity for the ER chaperone BiP and are finally degraded via retrograde translocation from the ER lumen back to the cytosol. This ER-associated protein degradation (ERAD) is currently thought to constitute the main disposal route, but there is growing evidence for a vacuolar role in quality control. We show that BiP is transported to the vacuole in a wortmannin-sensitive manner in tobacco (Nicotiana tabacum) and that it could play an active role in this second disposal route. ER export of BiP occurs via COPII-dependent transport to the Golgi apparatus, where it competes with other HDEL receptor ligands. When HDEL-mediated retrieval from the Golgi fails, BiP is transported to the lytic vacuole via multivesicular bodies, which represent the plant prevacuolar compartment. We also demonstrate that a subset of BiP-ligand complexes is destined to the vacuole and differs from those likely to be disposed of via the ERAD pathway. Vacuolar disposal could act in addition to ERAD to maximize the efficiency of quality control in the secretory pathway.  相似文献   

3.
4.
Certain endoplasmic reticulum (ER)-associated degradation (ERAD) substrates with transmembrane domains are segregated from other ER proteins and sorted into a juxtanuclear subcompartment, known as the ER quality control compartment. Bap31 is an ER protein with three transmembrane domains, and it is assumed to be a cargo receptor for ER export of some transmembrane proteins, especially those prone to ERAD. Here, we show that Bap31 is a component of the ER quality control compartment and that it moves between the peripheral ER and a juxtanuclear ER or ER-related compartment distinct from the conventional ER–Golgi intermediate compartment. The third and second transmembrane domains of Bap31 are principally responsible for the movement to and recycling from the juxtanuclear region, respectively. This cycling was blocked by depolymerization of microtubules and disruption of dynein–dynactin function. Overexpression of Sar1p and Arf1 mutants affected Bap31 cycling, suggesting that this cycling pathway is related to the conventional vesicular transport pathways.  相似文献   

5.
Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins.  相似文献   

6.
Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.  相似文献   

7.
During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins. In the present study, we employed FOS (free oligosaccharides) released from degrading glycoproteins as biomarkers of ERAD (ER-associated degradation), allowing us to gain a global rather than single protein-centred view of ERAD. Glucosidase inhibition was used to discriminate between glucosidase- and endomannosidase-mediated ERAD pathways. Endomannosidase expression was manipulated in CHO (Chinese-hamster ovary)-K1 cells, naturally lacking a functional version of the enzyme, and HEK (human embryonic kidney)-293T cells. Endomannosidase was shown to decrease the levels of total FOS, suggesting decreased rates of ERAD. However, following pharmacological inhibition of ER glucosidases I and II, endomannosidase expression resulted in a partial switch between glucosylated FOS, released from ER-confined glycoproteins, to deglucosylated FOS, released from endomannosidase-processed glycoproteins transported from the Golgi/ERGIC (ER/Golgi intermediate compartment) to the ER. Using this approach, we have identified a previously unknown pathway of glycoprotein flow, undetectable by the commonly employed methods, in which secretory cargo is targeted back to the ER after being processed by endomannosidase.  相似文献   

8.
9.
Studies in hepatocyte cultures indicate that apolipoprotein (apo) B-100 production is regulated largely by intracellular degradation and the proteasome pathway is a major mechanism for the degradation. In the present study, we have examined the detailed itinerary of apoB degradation through its secretory pathway in HepG2 cells. We found that ubiquitin-dependent proteasomal degradation of apoB largely occurred on the cytosolic surface of rough and smooth endoplasmic reticulum (ER) and that a small proportion of apoB was dislodged from the secretory organelles into the cytosolic compartment where it underwent ubiquitination for proteasomal degradation. The transmembrane conformation of apoB persisted as the protein was transported through the Golgi apparatus. We further demonstrated that proteasomal degradation of apoB was associated the Golgi apparatus but Golgi-associated apoB was not ubiquitinated, indicating an ubiquitin-independent proteasomal degradation of apoB is associated with this organelle. We conclude that apoB undergoes proteasomal degradation while going through different compartments of the secretory pathway; further, ER-associated proteasomal degradation of apoB in the ER is ubiquitin-dependent whereas that occurring in the Golgi is ubiquitin-independent.  相似文献   

10.
Newly synthesized proteins that do not fold correctly in the ER are targeted for ER-associated protein degradation (ERAD) through distinct sorting mechanisms; soluble ERAD substrates require ER-Golgi transport and retrieval for degradation, whereas transmembrane ERAD substrates are retained in the ER. Retained transmembrane proteins are often sequestered into specialized ER subdomains, but the relevance of such sequestration to proteasomal degradation has not been explored. We used the yeast Saccharomyces cerevisiae and a model ERAD substrate, the cystic fibrosis transmembrane conductance regulator (CFTR), to explore whether CFTR is sequestered before degradation, to identify the molecular machinery regulating sequestration, and to analyze the relationship between sequestration and degradation. We report that CFTR is sequestered into ER subdomains containing the chaperone Kar2p, and that sequestration and CFTR degradation are disrupted in sec12ts strain (mutant in guanine-nucleotide exchange factor for Sar1p), sec13ts strain (mutant in the Sec13p component of COPII), and sec23ts strain (mutant in the Sec23p component of COPII) grown at restrictive temperature. The function of the Sar1p/COPII machinery in CFTR sequestration and degradation is independent of its role in ER-Golgi traffic. We propose that Sar1p/COPII-mediated sorting of CFTR into ER subdomains is essential for its entry into the proteasomal degradation pathway. These findings reveal a new aspect of the degradative mechanism, and suggest functional crosstalk between the secretory and the degradative pathways.  相似文献   

11.
Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca2+ mobilization. We propose that cytosolic phospholipase A, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.  相似文献   

12.
13.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

14.
Clearance of misfolded proteins in the endoplasmic reticulum (ER) is traditionally handled by ER-associated degradation (ERAD), a process that requires retro-translocation and ubiquitination mediated by a luminal chaperone network. Here we investigated whether the secreted, glaucoma-associated protein myocilin was processed by this pathway. Myocilin is typically transported through the ER/Golgi network, but inherited mutations in myocilin lead to its misfolding and aggregation within trabecular meshwork cells, and ultimately, ER stress-induced cell death. Using targeted knockdown strategies, we determined that glucose-regulated protein 94 (Grp94), the ER equivalent of heat shock protein 90 (Hsp90), specifically recognizes mutant myocilin, triaging it through ERAD. The addition of mutant myocilin to the short list of Grp94 clients strengthens the hypothesis that β-strand secondary structure drives client association with Grp94. Interestingly, the ERAD pathway is incapable of efficiently handling the removal of mutant myocilin, but when Grp94 is depleted, degradation of mutant myocilin is shunted away from ERAD toward a more robust clearance pathway for aggregation-prone proteins, the autophagy system. Thus ERAD inefficiency for distinct aggregation-prone proteins can be subverted by manipulating ER chaperones, leading to more effective clearance by the autophagic/lysosomal pathway. General Hsp90 inhibitors and a selective Grp94 inhibitor also facilitate clearance of mutant myocilin, suggesting that therapeutic approaches aimed at inhibiting Grp94 could be beneficial for patients suffering from some cases of myocilin glaucoma.  相似文献   

15.
16.
17.
Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin-proteasome system. The identity of the specific protein components responsible for retrotranslocation remains controversial, with the potential candidates being Sec61p, Der1p, and Doa10. We show that the cytoplasmic N-terminal domain of a short-lived transmembrane ERAD substrate is exposed to the lumen of the ER during the degradation process. The addition of N-linked glycan to the N terminus of the substrate is prevented by mutation of a specific cysteine residue of Sec61p, as well as a specific cysteine residue of the substrate protein. We show that the substrate protein forms a disulfide-linked complex to Sec61p, suggesting that at least part of the retrotranslocation process involves Sec61p.  相似文献   

18.
19.
The hexameric AAA-ATPase, Cdc48p, catalyzes an array of cellular activities, including endoplasmic reticulum (ER)-associated degradation (ERAD), ER/Golgi membrane dynamics, and DNA replication. Accumulating data suggest that unique Cdc48p partners, such as Npl4p-Ufd1p and Ubx1p/Shp1p (p47 in vertebrates), target Cdc48p for these diverse functions. Other Cdc48p-associated proteins have been identified, but the interplay among these factors and their activities is largely cryptic. We now report on a previously uncharacterized Cdc48p-associated protein, Ydr049p, also known as Vms1p, which binds Cdc48p at both the ER membrane and in the cytosol under non-stressed conditions. Loss of YDR049 modestly slows the degradation of the cystic fibrosis transmembrane conductance regulator but does not impede substrate ubiquitination, suggesting that Ydr049p acts at a postubiquitination step in the ERAD pathway. Consistent with Ydr049p playing a role in Cdc48p substrate release, ydr049 mutant cells accumulate Cdc48p-bound ubiquitinated proteins at the ER membrane. Moreover, YDR049 interacts with genes encoding select UBX (ubiquitin regulatory X) and UFD (ubiquitin fusion degradation) proteins, which are Cdc48p partners. Exacerbated growth defects are apparent in some of the mutant combinations, and synergistic effects on the degradation of cystic fibrosis transmembrane conductance regulator and CPY*, which is a soluble ERAD substrate, are evident in specific ydr049-ufd and -ubx mutants. These data suggest that Ydr049p acts in parallel with Cdc48p partners to modulate ERAD and other cellular activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号