首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Despite highest standards in nerve repair, functional recovery following nerve transection still remains unsatisfactory. Nonspecific reinnervation of target organs caused by misdirected axonal growth at the repair site is regarded as one reason for a poor functional outcome. This study was conducted to establish a method for preventing aberrant reinnervation between transected and repaired nerves in adjacency. Rat sciatic nerve was transected and repaired as follows: epineural sutures of the sciatic nerve (group A, n = 6), fascicular repair of tibial and peroneal nerves respectively (group B, n = 8), and, as in group B, separating both nerves using a pedicle fat flap as barrier (group C, n = 8). As control only, the tibial nerve was transected and repaired (group D, n = 5). Muscle contraction force of the gastrocnemius muscle was significantly higher in group C as compared with groups A and B after 4 months. Muscle weight showed significantly lower values in group A as compared with groups B, C, and D. Histologic examination in group C revealed little growth of axons from the tibial to the peroneal nerve and vice versa. This axon crossing was observed only when gaps between the fat cells were available. These findings were confirmed by a significantly lower rate of misdirected axonal growth as compared with groups A and B using sequential retrograde double labeling technique of the soleus motoneuron pool. We conclude that a pedicle fat flap significantly prevents aberrant reinnervation between repaired adjacent nerves resulting in significantly improved motor recovery in rats. Clinically, this is of importance for brachial plexus, sciatic nerve, and facial nerve repair.  相似文献   

2.
The effect of homozygotic Wnt-1?/? mutations on the development of ocular motoneurons was examined with the lipophilic dye DiI and compared to control and phenotypic wild-type mouse embryos. A piece of DiI-soaked filter paper was inserted into the orbit, the midbrain, or rhombomere 5 of the hindbrain in six paraformaldehydefixed litters (10.5, 12.5, and 14.5 days postcoitum) containing Wnt-1, Wnt+/?, and Wnt-1+/+ individuals and three control litters. We labeled all ocular motoneurons retrogradely and all relevant nerves anterogradely in all control and phenotypic wild-type animals. In all phenotypically identified Wnt-1?/? mutants we could always label the abducens nerve and motoneurons and the optic fibers to the thalamus, but we were unable to lable oculomotor or trochlear nerves or motoneurons. In addition to Wnt-1 knockout mutants, we also labeled mice from the WZT9B transgenic line carrying a lacZ reporter gene driven by the Wnt-1 gene enhancer. In these embryos we tested for co-localization of Wnt-1 expression in biotinylated dextran amine-labeled ocular motoneurons using a newly developed technique. In younger embryos we obtained evidence for co-localization of the β-galactosidase reaction product derived from lacZ gene activity in some retrogradely filled oculomotor motoneurons and adjacent to other oculomotor and the trochlear motoneurons. Acetylcholine esterase, a marker of early differentiating cholinergic neurons, showed a similar topology with respect to the lacZ reaction product. Thus, at least some future oculomotor motoneurons express Wnt-1, whereas others and the trochlear motoneurons caudal to the ventral midbrain expression of Wnt-1 may be exposed to the short range diffusion of the Wnt-1 gene product. Thus, the Wnt-1?/? mutation precludes formation or survival of midbrain and anterior hindbrain neurons, including oculomotor and trochlear motoneurons. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Depth of the facial nerve in face lift dissections   总被引:3,自引:0,他引:3  
Facial nerve depth was measured in 12 cadaver face halves after bilateral face lift dissections. The main nerve trunk emerged anterior to the midearlobe and was 20.1 +/- 3.1 mm deep. Nerve exit from the parotid edge also was deep, averaging 9.1 +/- 2.8 mm for temporal, 9.2 +/- 2.2 mm for zygomatic, 9.6 +/- 2.0 mm for buccal, and 10.6 +/- 2.7 mm for mandibular branches. Distal to the parotid gland, danger areas where nerve branches became superficial were distal temporal, lower buccal, and upper mandibular branches over the masseter muscle and marginal mandibular as it crossed the facial artery. Some protection in these danger areas was provided by fascia, especially superficial temporal and masseteric, while platysma provided some protection for the mandibular branch. Fascial and muscle protection was less in thin cadavers. Face lift dissection can be rapid in areas where facial nerve branches are deep or absent, such as postauricular, inferior to the zygomatic prominence, and near the earlobe.  相似文献   

4.
The location of the trigeminal motoneurons of the jaw muscles has been determined in the brainstem of the mallard utilizing retrograde axonal transport of horseradish peroxidase (HRP). Injections with HRP into the jaw muscles or application of HRP to the mandibular nerve showed that the trigeminal motor nucleus can be subdivided into five subnuclei, mV1-mV5. Three functional groups of jaw muscles are represented in separate subnuclei. The most lateral subnucleus mV2 innervates all but one adductor muscles, the intermediate mV1 innervates the pterygoid muscles + one adductor and the medial mV4 the two protractor muscles. The most ventral subnucleus mV3 contains the neurons innervating two extrinsic tongue muscles as well as some perikarya of adductor muscles. Subnucleus mV5 lies dorsomedial to mV4 and contains the motoneurons of the depressor muscle of the lower eye lid. Elements of the proprioceptive system, viz. presumptive gamma-neurons and mesencephalic trigeminal nucleus cells, could also be visualized. The topological and functional aspects of the subdivision of the motor nucleus are discussed.  相似文献   

5.
Development of the facial nerve was studied in normal chicken embryos and after surgical disruption of ingrowing sensory facial nerve fibers at 38-72 h of incubation. Disruption of facial nerve fibers by otocyst removal often induced a rostral deviation of the facial nerve and ganglion to the level of the trigeminal ganglion. Cell bodies of the geniculate ganglion trailed their deviating neurites and occupied an abnormal rostral position adjacent to the trigeminal ganglion. Deviating facial nerve fibers were labeled with the carbocyanine fluorescent tracer DiI in fixed tissue. Labeled fibers penetrated the cranium adjacent to the trigeminal ganglion, but they did not follow the trigeminal nerve fibers into the brain stem. Rather, after entering the cranium, they projected caudally to their usual site of entrance and proceeded towards their normal targets. This rostral deviation of the facial nerve was observed only after surgery at 48-72 h of incubation, but not in cases with early otocyst removal (38-48 h). A rostral deviation of the facial nerve was seen in cases with partial otocyst removal when the vestibular nerve was absent. The facial nerve followed its normal course when the vestibular nerve persisted. We conclude that disruption of the developing facial pathway altered the routes of navigating axons, but did not prevent pathfinding and innervation of the normal targets. Pathfinding abilities may not be restricted to pioneering axons of the facial nerve; later-developing facial nerve fibers also appeared to have positional information. Our findings are consistent with the hypothesis that navigating axons may respond to multiple guidance cues during development. These cues appear to differ as a function of position of the navigating axon.  相似文献   

6.
Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.  相似文献   

7.
Summary Slices of the posterior salivary gland and of the superior buccal lobe of the brain of Octopus vulgaris take up 3H-5-hydroxytryptamine in vitro. By light and electron microscopical radioautography the uptake is localised in certain neuronal perikarya and axonal varicosities in the superior buccal lobe, and in nerves that end in the secretory tubules of the posterior salivary gland. These structures do not incorporate 3H-noradrenaline. After formaldehyde histochemistry, monoamine fluorescence is found in some neuronal perikarya of the superior buccal lobe, and in nerves entering the secretory tubules of the gland. The posterior salivary gland nerve, which originates in the superior buccal lobe and supplies the gland, shows a pronounced accumulation of fluorescence on the proximal side of a ligature applied in vivo. It is suggested that monoamines are transported from the brain to the gland by the posterior salivary gland nerves.J. B. would like to thank the Science Research Council, Great Britain, for financial support.  相似文献   

8.
Taxol exerts a potent effect on the assembly and stability of cellular microtubules. In the present study this drug was injected into the facial nerve of mice, and its influence on retrograde axonal transport and on morphology of the facial nerve cell bodies was monitored. A reduction in the amount of retrogradely transported fluorescein isothiocyanate-conjugated wheat germ agglutinin from the peripheral field of innervation to neuronal perikarya was demonstrated by cytofluorometry. Transport was not completely blocked, since some degree of tracer accumulation was found in most neurons. Morphometric analysis was employed to determine the volume fraction of cells and cell nuclei as well as nucleolar size on micrographs of the facial nucleus. After facial nerve transection the reaction in nerve cell bodies was similar in taxol-injected animals and in animals not exposed to this substance. Furthermore, intraneural injection of taxol without prior nerve section resulted in nucleolar enlargement. The present data show that taxol-induced disturbances in microtubule organisation interferes with the retrograde axonal transport and suggest that changes associated with the retrograde nerve cell reaction may develop when the transfer of material from the peripheral field of innervation is disturbed.  相似文献   

9.
Taxol exerts a potent effect on the assembly and stability of cellular micro tubules. In the present study this drug was injected into the facial nerve of mice, and its influence on retrograde axonal transport and on morphology of the facial nerve cell bodies was monitored. A reduction in the amount of retrogradely transported fluorescein isothiocyanate-conjugated wheat germ agglutinin from the peripheral field of innervation to neuronal perikarya was demonstrated by cytofluorometry. Transport was not completely blocked, since some degree of tracer accumulation was found in most neurons. Morphometric analysis was employed to determine the volume fraction of cells and cell nuclei as well as nucleolar size on micrographs of the facial nucleus. After facial nerve transection the reaction in nerve cell bodies was similar in taxol-injected animals and in animals not exposed to this substance. Furthermore, intraneural injection of taxol without prior nerve section resulted in nucleolar enlargement. The present data show that taxol-induced disturbances in microtubule organisation interferes with the retrograde axonal transport and suggest that changes associated with the retrograde nerve cell reaction may develop when the transfer of material from the peripheral field of innervation is disturbed.  相似文献   

10.
In the preceding paper (H. Keshishian and D. Bentley, 1983a, Dev. Biol. 96, 89-102) the events leading to the morphogenesis of nerve 5B1 in the grasshopper embryonic metathoracic leg were presented. Here the role of later differentiating peripheral neurons in establishing the other major nerves of the leg is examined. In addition to the (tibial 1) (Ti1) pioneer neuron cell pairs that establish nerve 5B1 in the tibia femur, and coxa-trochanter, six later differentiating cells and/or cell pairs were identified and examined with respect to their role in peripheral nerve ontogeny. Nerve path pioneering was observed in two cell pairs of the distal tarsus (Ta1 and Ta2), by neurons of the posterior proximal tibia (Ti2), the posterior midfemur (neurons F3 and F4), and by an additional cell pair in the anterior coxal-trochanteral region of the limb bud (cell pair, CT2). In addition, efferent projections onto limb and epithelia played an important role in establishing nerve branches. In two nerves the axonal trajectory from the periphery to the CNS is established by afferent and efferent pathfinding axons meeting halfway and overgrowing each other's established projections. For each nerve branch examined it was found that axons projected initially to the cell bodies of previously arising neurons along the trajectory. The location along the limb bud ectoderm where neurons arise, and hence their ultimate cell body positions, played an important role in organizing the fasciculation of follower axons and establishing branch points.  相似文献   

11.
The soma location and peripheral connectivity of motoneurons in abdominal segments of the embryo and larva of the fruitfly, Drosophila melanogaster are described as an initial step in determining the mechanisms by which motoneurons make connections with their target muscles in a genetically accessible organism. Embryonic motoneuron somata were retrogradely labelled by application of the fluorescent dye, DiI, to the whole peripheral nerve or to its separate anterior or posterior fascicles in segments A5-A7 of late stage 15/early stage 16 embryos. This technique reveals a stereotyped, segmentally repeated population of 34 motoneurons per hemisegment, several of which can be individually identified from their soma position. The same set of motoneurons was revealed in third instar larvae of D. melanogaster by cobalt backfilling of abdominal peripheral nerves, although the positions of some of these neurons change during larval development. The peripheral connectivity and axon morphology of several of the abdominal motoneurons was determined by intracellular injection with Lucifer Yellow in stage 16 embryos. For the motoneurons with axons in the anterior fascicle there is no clear relationship between somata groupings and the muscle targets innervated: contrary to earlier claims, these motoneurons arborize over both ventral and dorsal muscles. Individual motoneurons possess a stereotyped pattern of terminal arborization.  相似文献   

12.
Individually identified primary motoneurons of the zebrafish embryo pioneer cell-specific peripheral motor nerves. Later, the growth cones of secondary motoneurons extend along pathways pioneered by primary motor axons. To learn whether primary motor axons are required for pathway navigation by secondary motoneurons, we ablated primary motoneurons and examined subsequent pathfinding by the growth cones of secondary motoneurons. We found that ablation of the primary motoneuron that pioneers the ventral nerve delayed ventral nerve formation, but a normal-appearing nerve eventually formed. Therefore, the secondary motoneurons that extend axons in the ventral nerve were able to pioneer that pathway in the absence of the pathway-specific primary motoneuron. In contrast, in the absence of the primary motoneuron that normally pioneers the dorsal nerve, secondary motoneurons did not pioneer a nerve in the normal location, instead they formed dorsal nerves in an atypical position. This difference in the ability of these two groups of motoneurons to pioneer their normal pathways suggests that the guidance rules followed by their growth cones may be very different. Furthermore, the observation that the atypical dorsal nerves formed in a consistent incorrect location suggests that the growth cones of the secondary motoneurons that extend dorsally make hierarchical pathway choices.  相似文献   

13.
Experiments were performed on 36 male albino rats anaesthetized with pentobarbitone sodium and paralyzed with gallamine triethiodide. Recordings were made with single and multibarrel glass microelectrodes in the facial nucleus and monopolar silver wire electrodes on the lingual, facial, glossopharyngeal and hypoglossal nerves. The absolute refractory period for facial motoneurones is 2-3 ms, the relative refractory period has a duration of 26-34 ms and the range in axonal conduction velocities is from 15 to 45 m.sec-1. No evidence for afferent fibres in the muscle branches of the facial and hypoglassal nerves could be found. The lingual and glossopharyngeal nerves show reflex connexions with both the facial and hypoglassal nerves. The time courses of the potentiations and depressions of test facial antidromic field potentials following lingual and glossopharyngeal conditioning stimuli are given. Evoked synaptic activity and the distribution of field potentials in the facial mucleus following lingual and glossopharyngeal nerve stimulation are also described. The observed lingual and glossopharyngeal-facial reflexes are discussed with respect to blink reflexes.  相似文献   

14.
The temporalis: blood supply and innervation   总被引:3,自引:0,他引:3  
  相似文献   

15.
1. The relationships between Aplysia buccal neurons projecting the cerebral ganglion (L cells) and peribuccal regions were studied by electrophysiological techniques. 2. Stimulation of the cerebral upper labial (UL) and anterior tentacular (AT) nerves produced excitatory postsynaptic potentials in L cells. 3. Sixteen cells out of 24 were found possess an axonal branch in the labial branch of the AT nerve, 1 out of 8 in the UL nerve. 4. These axonal branches did not show any direct motor or sensory function in "reduced" preparations. 5. A modulatory function for the axonal projections and a sensory role for the synaptic relationships are hypothesized.  相似文献   

16.
Calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerve fibers are abundant in the rat penis. In addition, NADPH-diaphorase, which stains for nitric oxide synthase, has been localized within both autonomic and sensory dorsal root ganglia (DRG) and may be part of an important biochemical pathway involved in penile tumescence. The purpose of this study was: 1) to examine the circuitry of afferent nerves that are CGRP immunoreactive from the L6 DRG, 2) to examine the possibility that there are NADPH-diaphorase-positive afferent fibers from the L6 DRG to the rat penis, and 3) to examine the localization and colocalization of CGRP and NADPH-diaphorase within L6 DRG afferent perikarya. Calcitonin gene-related peptide immunostaining in the penis was eliminated following a bilateral transection of the pudendal nerves, but was unchanged following a bilateral transection of the pelvic splanchnic or hypogastric nerves. The NADPH-diaphorase staining was not altered by any of the nerve transections. Injection of the retrograde axonal tracer fluorogold (FG) into the dorsum penis labeled perikarya in the L6 DRG. Although the majority of FG-labeled perikarya contained neither CGRP nor NADPH-diaphorase, small subpopulations of perikarya contained either CGRP immunoreactivity, NADPH-diaphorase, or both. A unilateral pudendal nerve transection virtually eliminated (>99%) FG labeling in the ipsilateral L6 DRG. These data suggest that NADPH-diaphorase and CGRP are present, either together or separately, within a subpopulation of penile afferent perikarya. In addition, CGRP-immunoreactive afferent nerve fibers reach the penis primarily via the pudendal nerves. Finally, NADPH-diaphorase-positive penile afferents may be another important source of nitric oxide (NO) for penile tumescence.  相似文献   

17.
New buccinator myomucosal island flap: anatomic study and clinical application   总被引:14,自引:0,他引:14  
The authors studied the vascular anatomy of the buccinator muscle by dissecting fresh cadavers. The anatomy of the buccal branches of the facial artery consistently confirmed the existence of a posterior buccal branch, a few inferior buccal branches, and anterior buccal branches to the posterior, inferior, and anterior portions of the buccinator. The buccal artery and posterior buccal branch anastomose to each other and ramify over the muscle. Several veins originate from the lateral aspect of the muscle, converge into the buccal venous plexus, and drain into the facial vein (from two to four tributaries) or into the pterygoid plexus and the internal maxillary vein (from the buccal vein). These vessels and nerves enter the posterior half of the buccinator posterolaterally. The facial artery and vein are located at variable distances from each other around the oral commissure and the nasal base. Two patterns of buccinator musculomucosal island flaps supplied by these buccal arterial branches are proposed in this article. The buccal musculomucosal neurovascular island flap (posteriorly based), supplied by the buccal artery, its posterior buccal branch, and the long buccal nerve, can be passed through a tunnel under the pterygomandibular ligament for closure of mucosal defects in the palate, pharyngeal sites, the alveolus, and the floor of the mouth. The buccal musculomucosal reversed-flow arterial island flap (superiorly based), supplied by the distal portion of the facial artery through the anterior buccal branches, can be used to close mucosal defects in the anterior hard palate, alveolus, maxillary antrum, nasal floor and septum, lip, and orbit. The authors have used the flaps in 12 patients. There has been no flap necrosis, and results have been satisfactory, both aesthetically and functionally.  相似文献   

18.
Synaptic processes in various functional groups of thoracic motoneurons (Th9-Th11) evoked by stimulation of segmental nerves were investigated in anesthetized and decerebrate cats. No reciprocal relations were found between these groups of motoneurons. Only excitatory mono- and polysynaptic responses were recorded in the motoneurons of the principal intercostal nerve following stimulation of the homonymous nerve. Activation of the afferents of the external intercostal muscle and dorsal branches does not cause noticeable synaptic processes in these motoneurons; much more rarely it is accompanied by the development of low-amplitude polysynaptic EPSP's. In motoneurons of the dorsal branches, stimulation of homonymous nerves leads to the appearance of simple, short-latent EPSP's. Late responses of the IPSP or EPSP - IPSP type with a predominance of the inhibitory component were observed in most motoneurons of this type following activation of the afferent fibers of the principal intercostal nerve. In other motoneurons of the dorsal muscles, stimulation of the main intercostal nerve (and nerve of the external intercostal muscle) did not evoke apparent synpatic processes. EPSP's (mono- and polysynaptic) appeared in the motoneurons of the external intercostal muscle following stimulation of the homonymous and main intercostal nerves. Activation of the afferents of the dorsal branches was ineffective. The character of the synaptic responses of the respiratory motoneurons to segmental afferent stimulation, investigated under conditions of spontaneous respiration, was different. The characteristics of synaptic activation of thoracic motoneurons by segmental afferents under conditions of hyperventilation apnea and during spontaneous breathing of the animals are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 279–288, May–June, 1970.  相似文献   

19.
Spinocerebellar neurons have been found in previous studies in lamina IX of the lumbosacral spinal cord. This lamina has been characterized as being composed of motor cell groups and the spinocerebellar neurons in the lamina have been found to have certain morphological similarities with the motoneurons. Retrograde double labeling technique, utilizing fluorescent dyes, was used for studying the relations between the spinocerebellar neurons and the motoneurons in lamina IX of the lumbosacral spinal cord in four adult cats. In three of them, Rhodamine labeled latex microspheres were injected bilaterally into the cerebellum and Fast Blue (FB) was injected into hindlimb nerves. In the fourth case, FB was injected into the cerebellum, while the peripheral nerves were injected with propidium iodide. Some overlap was found between labeled spinocerebellar neurons and motoneurons in certain parts of lamina IX, especially in the ventrolateral nucleus in the caudal part of L5 and rostral L6, in the dorsolateral nucleus from the caudal part of L5 to L6 and in the ventromedial nucleus at the S2 level. No double labeled neurons were found, however, in any of these or in other examined areas. This strongly indicates that spinocerebellar neurons in lamina IX are a separate population, different from motoneurons.  相似文献   

20.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号