首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
[1-14C]-ethanol supplied to the cotyledons of 9-d-old Euphorbialathyris seedlings was rapidly incorporated into unsaponifiablelipids, particularly into sterols, latex triterpenols and intothe triterpene ketones of the epicuticular wax. The [14C]-triterpenoidproduction from ethanol was hardly affected by sucrose in theexternal medium when sucrose uptake rates were low, but whenthe uptake rate was higher the [14C]-triterpenoid productionfrom [14C]-ethanol was greatly reduced. This observation isconsistent with the proposition that at high sucrose uptakerates, some sucrose is converted into ethanol, so that the incorporationof [14C]-ethanol into triterpenoids is reduced by competitionwith endogenously formed ethanol. A calculation based on theputative daily ethanol production in the cotyledons and thedaily triterpenoid production of seedlings indicates that about10 % of the triterpenoid synthesis in vivo may be from ethanol. Ethanol, Euphorbia lathyris, fermentation, seedling, triterpenoid biosynthesis  相似文献   

2.
Petioles of Sinapis cotyledons cultured in 6x10–2 M sucrosein the light increased 28-fold in total carbohydrate contentover a 7-d period compared with an 8-fold increase in petiolesof cotyledons cultured on water. The starch and reducing sugarfractions were the major components of this accumulation. Labelledsucrose applied to the petiole base moved quickly up the petioleand into the main veins of the lamina. Some basipetal redistributionoccurred subsequently and after 24 h radioactivity accumulatedstrongly at the petiole base. Culture in sucrose reduced basalaccumulation and increased acropetal movement of the label. Fixation of 14CO2 by petioles remained constant when cotyledonswere cultured in water, whereas in sucrose, fixation fell by50 per cent during the first 2 d. The pattern of inhibitionof fixation matched the pattern of sucrose distribution in thepetiole. Petiolar chlorophyll content remained constant in controlsbut fell rapidly after 4 d culture in sucrose. The results are discussed in relation to the role of petiolarcarbohydrate accumulation in the regulation of CO2 fixation,primordium development, and senescence in this system.  相似文献   

3.
Developing soybean cotyledons were incubated with glucose-14C,pyruvate-14C, and acetate-14C. Glucose was metabolized by boththe Embden-Meyerhof-Parnas pathway and the pentose phosphatepathway. Developing soybean cotyledons also have the capacityto synthesize sucrose since 14C was found in fructose and sucrosefrom glucose incubations. Complete analysis showed that thecarbons from glucose were directed into CO2, lipid, and solids.Pyruvate was metabolized to a C-2 unit which is presumably acetylCoA. After conversion to the C-2 unit, the carbons of pyruvatewere metabolized in the same manner as acetate. Both pyruvateand acetate carbons were directed predominately into lipids. (Received January 6, 1976; )  相似文献   

4.
The pattern for primary products of CO2-fixation and the chloroplaststructure of Amaranthus retrqflexus L., a species which incorporatescarbon dioxide into C4 dicarboxylic acids as the primary productof photosynthesis, were compared in various chlorophyll containingtissues,i.e., foliage leaves, stems, cotyledons and pale-greencallus induced from stem pith. Despite some morphological differencesin these assimilatory tissues, malate and aspartate were identifiedas the major compounds labelled during a 10 sec fixation of14CO2 in all tissues. Whereas, aspartate was the major componentin C4-dicarboxylic acids formed in foliage leaves, malate predominatedas the primary product in stems, cotyledons and the pale-greencallus. The percentage of 14C-radioactivity incorporated intoPGA and sugar-P esters increased and 14C-sucrose was detectedin the prolonged fixation of 14CO2 in the light, not only infoliage leaves, but also in stems and cotyledons. 1 This work was supported by a Grant for Scientific ResearchNo. 58813, from the Ministry of Education, Japan. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo, Japan. 3 Present address: Department of Biochemistry, University ofGeorgia, Athens 30601. Georgia, U. S. A. (Received July 10, 1971; )  相似文献   

5.
Bryce, J. H. and ap Rees, T. 1985. Comparison of the respiratorymetabolism of Plantago lanceolata L. and Plantago major L.—J.exp. Bot. 36 1559–1565. The aim of this work was to discover if the respiratory metabolismof the roots of Plantago lanceolata L. differed from that ofthe roots of Plantago major L. Measurements of oxygen uptakeand dry weight of excised root systems during growth of seedlingsprovided evidence that the two species differed in the amountof respiration needed to support a given increase in dry weight.Excised root systems were given a 6-h pulse in [U-14C]sucrosefollowed by a 16.5-h chase in sucrose. The detailed distributionof 14C amongst the major components of the roots at the endof the pulse and the chase revealed no significant differencebetween the two species. Patterns of 14CO2 production from [1-14C],[2-14C], [3,4-14C], and [6-14C]glucose of excised root systemsfrom plants of three ages were similar for the two species.It is suggested that there is no conclusive evidence for anysignificant inherent difference in the respiratory metabolismof the roots of the two species. Key words: 14C sugar metabolism, respiration, roots, Plantago  相似文献   

6.
Carbohydrate accumulation in young, fully expanded leaves ofCitrus sinensis L. Osbeck is affected by the presence of thefruitlet on the shoot. Previous work gave evidence that gibberellinsmay be involved in this 'fruit effect'. In the present workwe have studied the effect of gibberellic acid (GA3) on 14C-sucroseuptake by leaf discs and whether its action could be due toa modulation of the plasma membrane ATPase, which maintainsthe H+ gradient that drives H+/sucrose co-transport. The effect of GA3 on 14C-sucrose uptake depended on the osmolarityof the assay medium. At 300 mOsm a reduction in the uptake ratewas observed. The inhibitory effect of the hormone disappearedafter preincubating the leaf discs with para-chloromercuri-phenylsulphonicacid (PCMPS), a sulphydril binding inhibitor. ATPase activityof isolated plasma membrane vesicles was inhibited by IAA treatments,while GA3 or ABA did not affect this enzyme, even after a 3h preincubation period. However, in the absence of a surfactantin the assay medium, GA3, together with turgor pressure, modulatedplasma membrane ATPase activity, possibly through modificationsof membrane permeability. The hormone effect on 14 C-sucroseuptake may involve action on the sucrose carrier.Copyright 1994,1999 Academic Press Abscisic acid, Citrus sinensis, gibberellic acid, indoleacetic acid, orange, osmotic pressure, plasma membrane ATPase, 14C-sucrose uptake  相似文献   

7.
Green carrot-callus cultures exposed for 3 h in liquid mediato light and 14CO2 secreted a constant 6–8 per cent oftheir total 14C-photosynthate into the medium over a wide rangeof 14CO2-fixation rates, obtained by varying 14CO2 levels. Themajor secreted products (sucrose and glutamine) or analoguesof these compounds did not affect secretion when included inthe bathing medium. Dual-labelling studies with [6-T] glucoseand 14CO2 demonstrated that secretion occurred from a metabolicrather than a storage compartment. The effects of long preincubationperiods in liquid media and of osmotic shock showed that secretiontook place from specific sites on the boundary of the metaboliccompartment.  相似文献   

8.
Seedlings of Cucumis sativus L. grew much less vigorously whencultured in potassium-deficient nutrient solution than in fullnutrients. The poorer growth was attributed to reduced CO2 fixationby the cotyledons, which form the bulk of the photosyntheticsurface at this stage, and to a much lower level of export ofphotosynthetic products from the cotyledons. The magnitude ofthese effects increased as the seedlings aged and they werea major factor in the poorer development of the plumule in potassium-deficientplants. Electron microscopic examination of the cotyledons shows thatthe lower 14CO2 fixation in potassiumstarved seedlings is associatedwith poorly-defined granal stacks and a proliferation of intergranalthylakoids. In plants grown in full nutrients the incorporationof radiocarbon into a cell wall fraction and into other insolublecomponents of the cell increased with cotyledon age whereasin potassium-deficient seedlings there was an increase in thepercentage of the total radiocarbon in the soluble fraction.This suggests either that the incorporation of photosyntheticproducts into cellular components was inhibited or that theability of the cotyledon to translocate photosynthetic productsto the rest of the seedling was reduced in plants grown in potassium-deficientconditions.  相似文献   

9.
Seeni  S.; Gnanam  A. 《Plant & cell physiology》1983,24(6):1033-1041
Photomixotrophic cell suspension culture was established fromthe leaf derived callus cells of Gisekia pharnaceoides L., aC4 dicotyledonous weed. The late log phase cells possessed shade-typecharacters such as low chlorophyll a/b ratio, less pronouncedO2 evolution and CO2 fixation, saturation of photosyntheticCO2 fixation at low intensity. The chloroplasts from these cellscontained granal stacking with high degree of a very few granawhich are characterized by their wide and high degree of stackings. The predominant labelling of 3-phosphoglyceric acid and sugarphosphates (40% of the total 14C incorporated) during 5 s exposureto 14CO2 in light and subsequent decrease in percentage of 14Cin these compounds with increase in exposure time indicatedthe operation of the C3 pathway in these cells. The simultaneoussynthesis of malate (23% of the total 14C incorporated) is relatedto the much pronounced glycolytic and tricarboxylic acid cycleactivities in these cells. The initial proliferation of callimainly from the zones of vascular supplies in the leaf, highstarch content of the cells, presence of large starch grainsin all the chloroplasts, activities of Calvin cycle enzymes,heavy labelling of C3 type intermediates and less labellingof aspartate as early photosynthates and rapid accumulationof radioactivity into starch during 14CO2 assimilation indicatedthat most of the cells in photomixotrophic culture were derivedfrom bundle sheath cells or the leaf cells of Gisekia changetheir function under culture conditions. 1Present address: Tropical Botanic Garden and Research Institute,Navaranga Road, Trivandrum 695 011, India. (Received January 29, 1982; Accepted June 4, 1983)  相似文献   

10.
Acclimation of spinach plants grown at 25C to a temperatureof 10C for 10 d resulted in an increased capacity for leafphotosynthesis in saturating light and CO2 but not at ambientCO2 concentrations. Gas exchange and chlorophyll fluorescencemeasurements indicated that acclimation was accompanied by anincreased capacity for the regeneration of ribulose-1,5-bisphosphate.Changes in starch, soluble carbohydrates and activities of sucrose-Psynthase and ADP-glucose pyrophosphorylase were measured duringthe acclimation process. There was an initial increase in starchand sucrose during the first 2 d, but these then declined. Therewas an increase in the capacity for sucrose synthesis duringlow temperature acclimation, evidenced by an increase in themaximum activity of sucrose-P synthase activity and an increasein partitioning of 14CO2 into sucrose, but there was no increasein the activity of ADP-glucose pyrophosphorylase or carbon partitioninginto starch. Key words: Acclimation, carbon metabolism, gas exchange, low temperature, spinach, Spinacia oleracea  相似文献   

11.
Changes in growth and yield parameters, and 14CO2 and (U-14C)sucrose incorporation into the primary metabolic pool, and essentialoil have been investigated under Mn-deficiency and subsequentrecovery in Mentha piperita, grown in solution culture. UnderMn-deficiency, CO2 exchange rate, total chlorophyll, total assimilatoryarea, plant dry weight, and essential oil yield were significantlyreduced, whereas chlorophyll a/b ratio, leaf area ratio andleaf stem ratio significantly increased. In leaves of Mn-deficientplants, 14CO2 incorporation into the primary metabolic pool(ethanol-soluble and -insoluble) and essential oil were significantlylower, whereas (U-14C) sucrose incorporation into these componentswas significantly higher as compared to the control. Among theprimary metabolites, the label was maximum in sugars, followedby organic acids and amino acids. A higher label in these metaboliteswas, in general, observed in stems of Mn-deficient plants ascompared to the control. Mn-deficient plants supplied with completenutrient medium for 3 weeks exhibited partial recovery in growthand yield parameters, and essential oil biogenesis. Thus, underMn-deficiency and subsequent recovery, the levels of primaryphotosynthetic metabolites and their partitioning between leafand stem significantly influence essential oil biogenesis. Key words: Mentha piperita, Mn-stress, 14CO2 and [U-14C] sucrose incorporation, oil accumulation, primary photosynthetic metabolites  相似文献   

12.
The cotyledons of Euphorbia lathyris L. take up sucrose andamino acids from the endosperm. The interaction between theuptake of sucrose and that of amino acids by cotyledons of intactseedlings was investigated. Sucrose (100 mol m–3) reducedvaline uptake to 75% of the control rate; the active uptakecomponent of valine uptake was reduced from 45 to 25 % of thetotal uptake rate. In a reverse experiment, 100 mol m–3valine inhibited sucrose uptake by 25%. At 500 mol m–3sucrose, valine uptake was completely restored to the controlrate, whereas high valine concentrations failed to restore sucroseuptake. The stimulation of valine uptake by sucrose is linkedto the role of sucrose as a primary respiratory substrate. Whenthe cotyledons were bathed in sucrose concentrations rangingfrom 0 to 100 mol m–3 (these concentrations are non-saturatingwith respect to sucrose uptake), a constant 1.8% of the sucrosetaken up was respired. The Km of the concentration-dependentsucrose oxidation (44±6 mol m–3) agreed reasonablywell with that for sucrose uptake (29±6 mol m–3).When the external sucrose concentration was increased from 100to 600 mol m–3, the sucrose uptake increased by 30% again,while sucrose oxidation was increased by 300%. This increasewas not due to an increased engagement of the alternative (cyanide-resistant)pathway for respiration. Alternative pathway, Euphorbia lathyris L., fermentation, seedling, sucrose uptake, valine uptake  相似文献   

13.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

14.
野葛叶片和茎段高频再生体系的建立   总被引:5,自引:3,他引:2  
探讨几种因子对野葛叶片和茎段高频再生体系建立的影响。采用植物组织培养、正交实验和单因子实验的方法。野葛叶片和茎段的最佳消毒方式为70%酒精处理30 s后再用0.1%HgCl2处理15 min;野葛叶片愈伤组织诱导的最佳培养基为MS+NAA 1.0 mg·L-1+2,4-D 2 mg·L-1,野葛茎段愈伤组织诱导的最佳培养基为MS+NAA 0.5 mg·L-1+6-BA 1.0 mg·L-1+2,4-D 2 mg·L-1;暗培养更有利于野葛愈伤组织的诱导;野葛叶片和茎段愈伤组织诱导的最佳蔗糖浓度均为30 g·L-1;野葛叶片愈伤组织的最佳出芽培养基为MS+NAA 1.0 mg·L-1+6-BA 3.0 mg·L-1,而野葛茎段愈伤组织的最佳出芽培养基为MS+ NAA 0.5 mg·L-1+KT 2 mg·L-1;光照培养更有利于野葛叶片和茎段愈伤组织芽的再分化;野葛叶片愈伤组织再生芽生根的最佳培养基为MS+NAA 0.5 mg·L-1+PP333 0.5 mg·L-1,而野葛茎段愈伤组织再生芽生根的最佳培养基为MS+NAA 0.5 mg·L-1+PP333 3.0 mg·L-1;野葛叶片和茎段愈伤组织再生芽生根的最佳蔗糖浓度均为30 g·L-1;叶片再生苗移栽的最佳PP333浓度为1.0 mg·L-1,茎段再生苗移栽的最佳PP333浓度为3.0 mg·L-1;叶片和茎段再生苗的最佳移栽基质均为蛭石:珍珠岩(2:1)。  相似文献   

15.
Physiological responses to root pruning were investigated bycomparing 14CO2 fixation rates, the partitioning of 14C-labelledassimilate, and soluble and insoluble carbohydrate levels inthe leaves of carrot plants following the removal of some ofthe fibrous roots, or fibrous roots and part of the tap root.Root pruning reduced 14CO2 fixation by 28–45% but leafspecific activity (14C assimilation g-1 leaf fresh weight) wasunchanged. The proportion of total assimilate exported to theroot system increased following root pruning and this was atthe expense of the developing leaves. In younger plants (wherethe tap root received 10% of the assimilate) the supply of 14Cto the tap root was maintained in spite of root pruning. However,shortening the tap root to 3 cm in older plants (in which 30%of the fixed 14C was normally exported to the developing storageorgan), reduced its sink capacity and resulted in slightly greaterretention of 14C in the mature leaves. Greater concentrationsof insoluble carbohydrate were found in the mature leaves followingroot pruning but soluble sugar content was unaffected. Onlysmall differences were observed in the distribution of 14C betweensoluble and insoluble carbohydrate fractions when plants werefed 14CO2 several days after the root pruning operations. Thesephysiological responses were mainly associated with the removalof fibrous roots and support the view that the fibrous rootsystem is more important than the developing storage organ inregulating growth in young carrot plants.  相似文献   

16.
Time-courses of 14CO2-fixation and of enzyme activities involvedin photorespiration and photosynthesis were determined duringthe life span of cotyledons from sunflower seedlings (Helianthusannuus L.). Glycolate formation in vivo was estimated from theresults of combined labelling and inhibitor experiments. NADPH-glyceraldehyde-3-phosphatedehydrogenase, NADPH-glyoxylate reductase and chlorophyll werewell correlated with the time-course of 14CO2-fixation (photosynthesis).There was, however, a considerable discrepancy between the developmentalsequence of photosynthesis and that of both ribulose-l,5-bisphosphatecarboxylase and glycolate oxidase. Furthermore, time-coursesof glycolate oxidase activity in vitro and of glycolate formationin vivo differed significantly. Therefore, the use of glycolateoxidase as a marker for the activity of photorespiration ingreening sunflower cotyledons may be questionable. Results from14CO2-labelling experiments with cotyledons treated with theglycolate oxidase inhibitor 2-hydroxy butynoic acid suggestthat glycolate formation relative to CO2-fixation is reducedin senescent cotyledons. Key words: Development, glycolate oxidase, photorespiration, ribulose-l,5-bisphosphate carboxylase, oxygenase  相似文献   

17.
Marques, I. A., Oberholzer, M. J. and Erismann, K. H. 1985.Metabolism of glycollate by Lemna minor L. grown on nitrateor ammonium as nitrogen source.—J. exp. Bot. 36: 1685–1697. Duckweed, Lemna minor L., grown on inorganic nutrient solutionscontaining either NH4+ or NO3 as nitrogen source wasallowed to assimilate [1-14C]- or [2-14C]glycollate during a20 min period in darkness or in light. The incorporation ofradioactivity into water-soluble metabolites, the insolublefraction, and into the CO2 released was measured. In additionthe extractable activity of phosphoenolpyruvate carboxylasewas determined. During the metabolism of [2-14C]glycollate in darkness, as wellas in the light, NH4+ grown plants evolved more 14CO2 than NO3grown plants. Formate was labelled only from [2-14C]glycollateand in NH4+ grown plants it was significantly less labelledin light than in darkness. In NO3 grown plants formateshowed similar radioactivity after dark and light labelling.The radioactivity in glycine was little influenced by the nitrogensource. Amounts of radioactivity in serine implied that thefurther metabolism of serine was reduced in darkness comparedwith its metabolism in the light under both nitrogen regimes.In illuminated NH4+ plants, serine was labelled through a pathwaystarting from phosphoglycerate. After [1-14C]glycollate feedingNH4+ grown plants contained markedly more radioactive aspartateand malate than NO3 plants indicating a stimulated phosphoenolpyruvatecarboxylation in plants grown on NH4+. Key words: Photorespiration, glycollate, nitrogen, Lemna  相似文献   

18.
Segments of wheat leaves were supplied in the light with 14C-labelledserine or glucose in atmospheres containing different concentrationsof O2 and zero or 350 parts/106 CO2. Some O2 was necessary forsucrose synthesis from either serine or glucose but sucrosesynthesis from glucose depended on reactions with a high affinityfor O2 whereas sucrose synthesis from serine depended both onreactions with high and low affinities for O2. In the presenceof CO2 sucrose synthesis from serine was decreased when theO2 concentration was increased from 20 to 80% by volume andCO2 was liberated; sucrose synthesis from glucose was almostunaffected by the same change in conditions. Also, in an atmospherecontaining 80% O2 and 350 parts/106 CO2, radioactivity from[14C]serine, was incorporated into glycine. This was not truefor glucose feeding. Hence glucose provides a substrate forsucrose synthesis but not for photorespiration whereas serineis used for both processes in the presence of CO2; in the absenceof CO2 glucose provides substrate for both sucrose synthesisand photorespiration and serine metabolism to sucrose is restricted.  相似文献   

19.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

20.
The loss of organic material from the roots of forage rape (Brassicanapus L.,) was studied by pulse-labelling 25-d-old non-sterilesand-grown plants with 14CO2. The distribution of 14C withinthe plant was measured at 0, 6 and 13 d after labelling whilst14 C accumulating in the root-zone was measured at more frequentintervals. The rates of 14C release into the rhizosphere, andloss of 14CO2 from the rhizosphere were also determined. Thesedata were used to estimate the accumulative loss of 14C fromroots and loss respiratory 14CO2 from both roots and associatedmicro-organisms. Approximately 17-19% of fixed 14CO2 was translocatedto the roots over 2 weeks, of which 30-34% was released intothe rhizosphere, and 23-24% was respired by the roots as 14CO2. Of the 14C released into the rhizosphere, between 35-51%was assimilated and respired by rhizosphere micro-organisms.Copyright1993, 1999 Academic Press Brassica napus L., carbon loss, carbon partitioning, microbial nutrition, microbial respiration, forage rape, pulse-labelling, rhizodeposition, root respiration, sand culture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号