首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
To investigate the role of nuclear receptor coactivator peroxisome proliferator-activated receptor-interacting protein (PRIP) in mammary gland development, we generated a conditional null mutation of PRIP in mammary glands. In PRIP-deficient mammary glands, the elongation of ducts during puberty was not affected, but the numbers of ductal branches were decreased, a condition that persisted long after puberty, indicating that the potential of ductal branching was impaired. During pregnancy, PRIP-deficient mammary glands exhibited decreased alveolar density. The lactating PRIP-deficient glands contained scant lobuloalveoli with many adipocytes, whereas the wild type glands were composed of virtually no adipocytes but mostly lobuloalveoli. As a result, PRIP mammary-deficient glands could not produce enough milk to nurse all the pups during lactation. The ductal branching of mammary glands in response to estrogen treatment was attenuated in PRIP mutant glands. Whereas the proliferation index was similar between wild type and PRIP-deficient glands, increased apoptosis was observed in PRIP-deficient glands. PRIP-deficient glands expressed increased amphiregulin, transforming growth factor-alpha, and betacellulin mRNA as compared with wild type glands. The differentiated function of PRIP-deficient mammary epithelial cells was largely intact, as evidenced by the expression of abundant beta-casein, whey acidic protein (WAP), and WDNM1 mRNA. We conclude that PRIP is important for normal mammary gland development.  相似文献   

2.
Reelin signaling is required for appropriate cell migration and ductal patterning during mammary gland morphogenesis. Dab1, an intracellular adaptor protein activated in response to reelin signaling, is expressed in the developing mammary bud and in luminal epithelial cells in the adult gland. Reelin protein is expressed in a complementary pattern, first in the epithelium overlying the mammary bud during embryogenesis and then in the myoepithelium and periductal stroma in the adult. Deletion in mouse of either reelin or Dab1 induced alterations in the development of the ductal network, including significant retardation in ductal elongation, decreased terminal branching, and thickening and disorganization of the luminal wall. At later stages, some mutant glands overcame these early delays, but went on to exhibit enlarged and chaotic ductal morphologies and decreased terminal branching: these phenotypes are suggestive of a role for reelin in spatial patterning or structural organization of the mammary epithelium. Isolated mammary epithelial cells exhibited decreased migration in response to exogenous reelin in vitro, a response that required Dab1. These observations highlight a role for reelin signaling in the directed migration of mammary epithelial cells driving ductal elongation into the mammary fat pad and provide the first evidence that reelin signaling may be crucial for regulating the migration and organization of non-neural tissues.  相似文献   

3.
Integrin-mediated cell adhesion and signaling is required for mammary gland development and functions. As a major mediator of integrin signaling, focal adhesion kinase (FAK) has been implicated to play a role in the survival, proliferation, and differentiation of mammary epithelial cells in previously studies in vitro. To assess the role of FAK in vivo, we created mice in which FAK is selectively deleted in mammary epithelial cells. The mammary gland FAK conditional knock-out (MFCKO) mice are viable, fertile, and macroscopically indistinguishable from the control littermates. In virgin MFCKO mice, mammary ductal elongation is retarded at 5 weeks of age but reaches the full extent by 8 weeks of age compared with the control mice. However, the MFCKO females are unable to nurse their pups due to severe lobulo-alveolar hypoplasia and secretory immaturity during pregnancy and lactation. Analysis of the mammary epithelial cells in MFCKO mice showed reduced Erk phosphorylation, expression of cyclin D1, and a corresponding decrease in proliferative capability compared with the littermate controls. In addition, phosphorylation of STAT5 and expression of whey acidic protein are significantly reduced in the mammary glands of MFCKO mice, suggesting defective secretory maturation in these mice. Therefore, the combination of the severe lobulo-alveolar hypoplasia and defective secretory differentiation is responsible for the inability of the MFCKO females to nurse their pups. Together, these results provide strong support for a role of FAK in the mammary gland development and function in vivo.  相似文献   

4.
5.
6.
Vitamin D(3) receptor ablation alters mammary gland morphogenesis   总被引:5,自引:0,他引:5  
Postnatal mammary gland morphogenesis is achieved through coordination of signaling networks in both the epithelial and stromal cells of the developing gland. While the major proliferative hormones driving pubertal mammary gland development are estrogen and progesterone, studies in transgenic and knockout mice have successfully identified other steroid and peptide hormones that impact on mammary gland development. The vitamin D(3) receptor (VDR), whose ligand 1,25-dihydroxyvitamin D(3) is the biologically active form of vitamin D(3), has been implicated in control of differentiation, cell cycle and apoptosis of mammary cells in culture, but little is known about the physiological relevance of the vitamin D(3) endocrine system in the developing gland. In these studies, we report the expression of the VDR in epithelial cells of the terminal end bud and subtending ducts, in stromal cells and in a subset of lymphocytes within the lymph node. In the terminal end bud, a distinct gradient of VDR expression is observed, with weak VDR staining in proliferative populations and strong VDR staining in differentiated populations. The role of the VDR in ductal morphogenesis was examined in Vdr knockout mice fed high dietary Ca(2+) which normalizes fertility, serum estrogen and neonatal growth. Our results indicate that mammary glands from virgin Vdr knockout mice are heavier and exhibit enhanced growth, as evidenced by higher numbers of terminal end buds, greater ductal outgrowth and enhanced secondary branch points, compared with glands from age- and weight-matched wild-type mice. In addition, glands from Vdr knockout mice exhibit enhanced growth in response to exogenous estrogen and progesterone, both in vivo and in organ culture, compared with glands from wild-type mice. Our data provide the first in vivo evidence that 1,25-dihydroxyvitamin D(3) and the VDR impact on ductal elongation and branching morphogenesis during pubertal development of the mammary gland. Collectively, these results suggest that the vitamin D(3) signaling pathway participates in negative growth regulation of the mammary gland.  相似文献   

7.
Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.  相似文献   

8.
ATBF1 is a candidate tumor suppressor that interacts with estrogen receptor (ER) to inhibit the function of estrogen-ER signaling in gene regulation and cell proliferation control in human breast cancer cells. We therefore tested whether Atbf1 and its interaction with ER modulate the development of pubertal mammary gland, where estrogen is the predominant steroid hormone. In an in vitro model of cell differentiation, i.e., MCF10A cells cultured in Matrigel, ATBF1 expression was significantly increased, and knockdown of ATBF1 inhibited acinus formation. During mouse mammary gland development, Atbf1 was expressed at varying levels at different stages, with higher levels during puberty, lower during pregnancy, and the highest during lactation. Knockout of Atbf1 at the onset of puberty enhanced ductal elongation and bifurcation and promoted cell proliferation in both ducts and terminal end buds of pubertal mammary glands. Enhanced cell proliferation primarily occurred in ER-positive cells and was accompanied by increased expression of ER target genes. Furthermore, inactivation of Atbf1 reduced the expression of basal cell markers (CK5, CK14 and CD44) but not luminal cell markers. These findings indicate that Atbf1 plays a role in the development of pubertal mammary gland likely by modulating the function of estrogen-ER signaling in luminal cells and by modulating gene expression in basal cells.  相似文献   

9.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

10.
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen‐responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen‐induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17β‐estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen‐only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol‐responsive genes that are also co‐expressed with estrogen receptor α in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development. Mol. Reprod. Dev. 76: 733–750, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

11.
Glucocorticoids have been shown to influence mammary gland function in vivo and to stimulate milk protein gene expression in vitro. Here, we describe the generation and analysis of a mouse model to study glucocorticoid receptor (GR, NR3C1) function in mammary epithelial cells. Using the Cre-loxP system, mutant mice were obtained in which the GR gene is specifically deleted in epithelial cells during lobuloalveolar development, leading to a complete loss of epithelial GR at the onset of lactation. Mice harboring the mammary-epithelial-specific GR mutation are able to nurse their litters until weaning. During pregnancy, however, GR deficiency delays lobuloalveolar development, leading to an incomplete epithelial penetration of the mammary fat pad that persists throughout lactation. We identified a reduced cell proliferation during lobuloalveolar development as reason for this delay. This reduction is compensated for by increased epithelial proliferation after parturition in the mutant glands. During lactation, GR-deficient mammary epithelium is capable of milk production and secretion. The expression of two milk proteins, namely whey acidic protein and beta-casein, during lactation was not critically affected in the absence of GR. We conclude that GR function is not essential for alveolar differentiation and milk production, but influences cell proliferation during lobuloalveolar development.  相似文献   

12.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

13.
The matrix-degrading metalloproteinases stromelysin-1, stromelysin-3, and gelatinase A are expressed during ductal branching morphogenesis of the murine mammary gland. Stromelysin-1 expression in particular correlates with ductal elongation, and in situ hybridization and three-dimensional reconstruction studies revealed that stromelysin-1 mRNA was concentrated in stromal fibroblasts along the length of advancing ducts. Transgenic mice expressing an activated form of stromelysin-1 under the control of the MMTV promoter/enhancer exhibited inappropriate alveolar development in virgin females. Ultrastructural analysis demonstrated that the basement membrane underlying epithelial and myoepithelial cells was amorphous and discontinuous compared with the highly ordered basal lamina in control mammary glands. Transgenic mammary glands had at least a twofold increase in the number of cells/unit area and a 1.4-fold increase in the percent of cycling cells by 13 wk of age compared with nontransgenic littermates. In addition, transgenic glands expressed beta-casein mRNA, but not protein, and resembled the proliferative and differentiated state of an animal between 8 and 10 days pregnant. An analysis of metalloproteinase expression in the glands of normal pregnant females demonstrated that the same matrix metalloproteinase family members, including stromelysin-1, were expressed in connective tissue cells surrounding epithelial clusters during the time of lobuloalveolar development. These results suggest that metalloproteinases may assist in remodeling ECM during normal ductal and alveolar branching morphogenesis, and that disruption of the basement membrane by an activated metalloproteinase can affect basic cellular processes of proliferation and differentiation.  相似文献   

14.
The Mediator subunit MED1 is essential for mammary gland development and lactation, whose contribution through direct interaction with estrogen receptors (ERs) is restricted to involvement in pubertal mammary gland development and luminal cell differentiation. Here, we provide evidence that the MED24-containing submodule of Mediator functionally communicates specifically with MED1 in pubertal mammary gland development. Mammary glands from MED1/MED24 double heterozygous knockout mice showed profound retardation in ductal branching during puberty, while single haploinsufficient glands developed normally. DNA synthesis of both luminal and basal cells were impaired in double mutant mice, and the expression of ER-targeted genes encoding E2F1 and cyclin D1, which promote progression through the G(1)/S phase of the cell cycle, was attenuated. Luciferase reporter assays employing double mutant mouse embryonic fibroblasts showed selective impairment in ER functions. Various breast carcinoma cell lines expressed abundant amounts of MED1, MED24, and MED30, and attenuated expression of MED1 and MED24 in breast carcinoma cells led to attenuated DNA synthesis and growth. These results indicate functional communications between the MED1 subunit and the MED24-containing submodule that mediate estrogen receptor functions and growth of both normal mammary epithelial cells and breast carcinoma cells.  相似文献   

15.
《Tissue & cell》2016,48(6):577-587
RNA binding proteins (RBPs) regulate gene expression by controlling mRNA export, translation, and stability. When altered, some RBPs allow cancer cells to grow, survive, and metastasize. Cold-inducible RNA binding protein (CIRP) is overexpressed in a subset of breast cancers, induces proliferation in breast cancer cell lines, and inhibits apoptosis. Although studies have begun to examine the role of CIRP in breast and other cancers, its role in normal breast development has not been assessed. We generated a transgenic mouse model overexpressing human CIRP in the mammary epithelium to ask if it plays a role in mammary gland development. Effects of CIRP overexpression on mammary gland morphology, cell proliferation, and apoptosis were studied from puberty through pregnancy, lactation and weaning. There were no gross effects on mammary gland morphology as shown by whole mounts. Immunohistochemistry for the proliferation marker Ki67 showed decreased proliferation during the lactational switch (the transition from pregnancy to lactation) in mammary glands from CIRP transgenic mice. Two markers of apoptosis showed that the transgene did not affect apoptosis during mammary gland involution. These results suggest a potential in vivo function in suppressing proliferation during a specific developmental transition.  相似文献   

16.
17.
In the mouse mammary gland, homeobox gene expression patterns suggest roles in development and neoplasia. In the human breast, we now identify a family of Iroquois-class (IRX) homeobox genes. One gene, IRX-2, is expressed in discrete epithelial cell lineages being found in ductal and lobular epithelium, but not in myoepithelium. Expression is absent from associated mesenchymal adipose stroma. During gland development, expression is concentrated in terminal end buds and terminal lobules and is reduced in a subset of epithelial cells during lactation. In contrast to observations for many homeobox genes in the mouse mammary gland in which homeobox gene expression is lost on neoplastic progression, IRX-2 expression is maintained in human mammary neoplasias. Data suggest IRX-2 functions in epithelial cell differentiation and demonstrate regulated expression during ductal and lobular proliferation as well as lactation.  相似文献   

18.
19.
20.
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lactation-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号