首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.  相似文献   

2.
Amyloid fibril formation is responsible for several neurodegenerative diseases and are formed when native proteins misfold and stick together with different interactive forces. In the present study, we have determined the mode of interaction of the anionic surfactant sarkosyl with hen egg white lysozyme (HEWL) [EC No. 3.2.1.17] at two pHs (9.0 and 13.0) and investigated its impact on fibrillogenesis. Our data suggested that sarkosyl is promoting amyloid fibril formation in HEWL at the concentration range between 0.9 and 3.0 mM and no amyloid fibril formation was observed in the concentration range of 3.0–20.0 mM at pH 9.0. The results were confirmed by several biophysical and computational techniques, such as turbidity measurement, dynamic light scattering, Raleigh scattering, ThT fluorescence, intrinsic fluorescence, far-UV CD and atomic force microscopy. Sarkosyl was unable to induce aggregation in HEWL at pH 13.0 as confirmed by turbidity and RLS measurements. HEWL forms larger amyloid fibrils in the presence of 1.6 mM of sarkosyl. The spectroscopic, microscopic and molecular docking data suggest that the negatively charged carboxylate group and 12-carbon hydrophobic tail of sarkosyl stimulate amyloid fibril formation in HEWL via electrostatic and hydrophobic interaction. This study leads to new insight into the process of suppression of fibrillogenesis in HEWL which can be prevented by designing ligands that can retard the electrostatic and hydrophobic interaction between sarkosyl and HEWL.  相似文献   

3.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

4.
We have revisited the well-studied heat and acidic amyloid fibril formation pathway (pH 1.6, 65 degrees C) of hen egg-white lysozyme (HEWL) to map the barriers of the misfolding and amyloidogenesis pathways. A comprehensive kinetic mechanism is presented where all steps involving protein hydrolysis, fragmentation, assembly and conversion into amyloid fibrils are accounted for. Amyloid fibril formation of lysozyme has multiple kinetic barriers. First, HEWL unfolds within minutes, followed by irreversible steps of partial acid hydrolysis affording a large amount of nicked HEWL, the 49-101 amyloidogenic fragment and a variety of other species over 5-40 h. Fragmentation forming the 49-101 fragment is a requirement for efficient amyloid fibril formation, indicating that it forms the rate-determining nucleus. Nicked full-length HEWL is recruited efficiently into amyloid fibrils in the fibril growth phase or using mature fibrils as seeds, which abolished the lag phase completely. Mature amyloid fibrils of HEWL are composed mainly of nicked HEWL in the early equilibrium phase but go through a "fibril shaving" process, affording fibrils composed of the 49-101 fragment and 53-101 fragment during more extensive maturation (incubation for longer than ten days). Seeding of the amyloid fibril formation process using sonicated mature amyloid fibrils accelerates the fibril formation process efficiently; however, addition of intact full-length lysozyme at the end of the lag phase slows the rate of amyloidogenesis. The intact full-length protein, in contrast to nicked lysozyme, slows fibril formation due to its slow conversion into the amyloid fold, probably due to inclusion of the non-amyloidogenic 1-48/102-129 portion of HEWL in the fibrils, which can function as a "molecular bumper" stalling further growth.  相似文献   

5.
The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting aggregates defined by EM and FTIR spectroscopy. Compact partially folded states, favoured by the addition of anions, are prone to precipitate rapidly into amorphous species, whilst well-defined fibrillar structures are formed slowly from more expanded denatured states. Kinetic data obtained by a variety of techniques show a clear lag phase in the formation of amyloid fibrils. NMR spectroscopy shows no evidence for a significant population of small oligomers in solution during or after this lag phase. EM and FTIR indicate the presence of amorphous aggregates (protofibrils) rich in beta-structure after the lag phase but prior to the development of well-defined amyloid fibrils. These observations strongly suggest a nucleation and growth mechanism for the formation of the ordered aggregates. The morphologies of the fibrillar structures were found to be highly sensitive to the pH at which the protein solutions are incubated. This can be attributed to the effect of small perturbations in the electrostatic interactions that stabilise the contacts between the protofilaments forming the amyloid fibrils. Moreover, different hydrogen bonding patterns related to the various aggregate morphologies can be distinguished by FTIR analysis.  相似文献   

6.
Protein aggregation leading to formation of amyloid fibrils is a symptom of several diseases like Alzheimer’s, type 2 diabetes and so on. Elucidating the poorly understood mechanism of such phenomena entails the difficult task of characterizing the species involved at each of the multiple steps in the aggregation pathway. It was previously shown by us that spontaneous aggregation of hen-eggwhite lysozyme (HEWL) at room temperature in pH 12.2 is a good model to study aggregation. Here in this paper we investigate the growth kinetics, structure, function and dynamics of multiple intermediate species populating the aggregation pathway of HEWL at pH 12.2. The different intermediates were isolated by varying the HEWL monomer concentration in the 300 nM—0.12 mM range. The intermediates were characterized using techniques like steady-state and nanosecond time-resolved fluorescence, atomic force microscopy and dynamic light scattering. Growth kinetics of non-fibrillar HEWL aggregates were fitted to the von Bertalanffy equation to yield a HEWL concentration independent rate constant (k = (6.6±0.6)×10−5 s−1). Our results reveal stepwise changes in size, molecular packing and enzymatic activity among growing HEWL aggregates consistent with an isodesmic aggregation model. Formation of disulphide bonds that crosslink the monomers in the aggregate appear as a unique feature of this aggregation. AFM images of multiple amyloid fibrils emanating radially from amorphous aggregates directly confirmed that on-pathway fibril formation was feasible under isodesmic polymerization. The isolated HEWL aggregates are revealed as polycationic protein nanoparticles that are robust at neutral pH with ability to take up non-polar molecules like ANS.  相似文献   

7.
A number of medical disorders, including Alzheimer's disease and type II diabetes, is characterised by the deposition of amyloid fibrils in tissue. The insolubility and size of the fibrils has largely precluded the determination of their structures at high resolution. Studies probing the stability of amyloid fibrils can reveal which non-covalent interactions are important in the formation and maintenance of the fibril structure. In particular, we review here the use of high hydrostatic pressure and high temperature as perturbation techniques. In general, small aggregates formed early in the assembly process can be dissociated by high pressure, but mature amyloid fibrils are highly pressure stable. This finding suggests that a temporal transition occurs during which side chain packing and hydrogen bond formation are optimised, whereas the hydrophobic effect and electrostatic interactions play a dominant role in the early stages of the aggregation. High temperatures, however, can disrupt most aggregates. Though the observed stability of amyloid fibrils is not unique to these structures, the notion that amyloid fibrils can represent the global minimum in free energy is supported by this type of investigations. Some implications regarding the nature of toxic species, associated with at least many of the amyloid disorders, and recently proposed structural models are discussed.  相似文献   

8.
Autocatalytic cleavage of lithostathine leads to the formation of quadruple-helical fibrils (QHF-litho) that are present in Alzheimer's disease. Here we show that such fibrils also occur in Creutzfeldt-Jakob and Gerstmann-Str?ussler-Scheinker diseases, where they form protease-K-resistant deposits and co-localize with amyloid plaques formed from prion protein. Lithostathine does not appear to change its native-like, globular structure during fibril formation. However, we obtained evidence that a cluster of six conserved tryptophans, positioned around a surface loop, could act as a mobile structural element that can be swapped between adjacent protein molecules, thereby enabling the formation of higher order fibril bundles. Despite their association with these clinical amyloid deposits, QHF-litho differ from typical amyloid fibrils in several ways, for example they produce a different infrared spectrum and cannot bind Congo Red, suggesting that they may not represent amyloid structures themselves. Instead, we suggest that lithostathine constitutes a novel component decorating disease-associated amyloid fibrils. Interestingly, [6,6']bibenzothiazolyl-2,2'-diamine, an agent found previously to disrupt aggregates of huntingtin associated with Huntington's disease, can dissociate lithostathine bundles into individual protofilaments. Disrupting QHF-litho fibrils could therefore represent a novel therapeutic strategy to combat clinical amyloidoses.  相似文献   

9.
The calcium-binding equine lysozyme has been found to undergo conversion into amyloid fibrils during incubation in solution at acidic pH. At pH 4.5 and 57 degrees C, where equine lysozyme forms a partially unfolded molten globule state, the protein forms protofilaments with a width of ca. 2 nm. In the absence of Ca(2+) the protofilaments are present as annular structures with a diameter of 40-50 nm. In the presence of 10 mM CaCl(2) the protofilaments of equine lysozyme are straight or curved; they can assemble into thicker threads, but they do not appear to undergo circularisation. At pH 2.0, where the protein is more destabilised compared to pH 4.5, fibril formation occurs at 37 degrees C and 57 degrees C. At pH 2.0, both ring-shaped and linear protofilaments are formed, in which periodic repeats of ca 35 nm can be distinguished clearly. The rings constitute about 10% of all fibrillar species under these conditions and they are characterised by a larger diameter of 70-80 nm. All the structures bind Congo red and thioflavine T in a manner similar to fibrils associated with a variety of amyloid diseases. At pH 2.0, fibril formation is accompanied by some acidic hydrolysis, producing specific fragmentation of the protein, leading to the accumulation of two peptides in particular, consisting of residues 1-80 and 54-125. At the initial stages of incubation, however, full-length equine lysozyme represents the dominant species within the fibrils. We propose that the ring-shaped structures observed here, and in the case of disease-associated proteins such as alpha-synuclein, could be a second generic type of amyloid structure in addition to the more common linear fibrils.  相似文献   

10.
Investigation of factors that modulate amyloid formation of proteins is important to understand and mitigate amyloid-related diseases. To understand the role of electrostatic interactions and the effect of ionic cosolutes, especially anions, on amyloid formation, we have investigated the effect of salts such as NaCl, NaI, NaClO(4), and Na(2)SO(4) on the amyloid fibril growth of beta(2)-microglobulin, the protein involved in dialysis-related amyloidosis. Under acidic conditions, these salts exhibit characteristic optimal concentrations where the fibril growth is favored. The presence of salts leads to an increase in hydrophobicity of the protein as reported by 8-anilinonaphthalene-1-sulfonic acid, indicating that the anion interaction leads to the necessary electrostatic and hydrophobic balance critical for amyloid formation. However, high concentrations of salts tilt the balance to high hydrophobicity, leading to partitioning of the protein to amorphous aggregates. Such amorphous aggregates are not competent for fibril growth. The order of anions based on the lowest concentration at which fibril formation is favored is SO(4)(2)(-) > ClO(4)(-) > I(-) > Cl(-), consistent with the order of their electroselectivity series, suggesting that preferential anion binding, rather than general ionic strength effect, plays an important role in the amyloid fibril growth. Anion binding is also found to stabilize the amyloid fibrils under acidic condition. Interestingly, sulfate promotes amyloid growth of beta(2)-microglobulin at pH between 5 and 6, closer to its isoelectric point. Considering the earlier studies on the role of glycosaminoglycans and proteoglycans (i.e., sulfated polyanions) on amyloid formation, our study suggests that preferential interaction of sulfate ions with amyloidogenic proteins may have biological significance.  相似文献   

11.
Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type lysozyme, a 130-residue protein containing four disulfide bridges. The results demonstrate distinct similarities between the structures formed by the different classes of fibrils despite the contrasting nature of the polypeptide species involved. SH3 and lysozyme fibrils consist typically of four protofilaments, exhibiting a left-handed twist along the fibril axis. The substructure of TTR(10-19) fibrils is not resolved by atomic force microscopy and their uniform appearance is suggestive of a regular self-association of very thin filaments. We propose that the exact number and orientation of protofilaments within amyloid fibrils is dictated by packing of the regions of the polypeptide chains that are not directly involved in formation of the cross-beta core of the fibrils. The results obtained for these proteins, none of which is directly associated with any human disease, are closely similar to those of disease-related amyloid fibrils, supporting the concept that amyloid is a generic structure of polypeptide chains. The detailed architecture of an individual fibril, however, depends on the manner in which the protofilaments assemble into the fibrillar structure, which in turn is dependent on the sequence of the polypeptide and the conditions under which the fibril is formed.  相似文献   

12.
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.  相似文献   

13.
As a prelude to experimental and theoretical work on the mechanical properties of fibrillar beta-lactoglobulin gels, this paper reports the structural characterization of beta-lactoglobulin fibrils by electron and atomic force microscopy (AFM), infrared and Raman spectroscopy, and powder X-ray diffraction. Aggregates formed by incubation of beta-lactoglobulin in various alcohol-water mixtures at pH 2, and in water-trifluoroethanol (TFE) at pH 7, were found to be wormlike (approximately 7 nm in width and <500 nm in length), with a "string-of-beads" appearance. Longer (approximately 7 nm in width, and >1 microm in length), smoother, and seemingly stiffer fibrils formed on heating aqueous beta-lactoglobulin solutions at pH 2 and low ionic strength, although there was little evidence for the higher-order structures common in most amyloid-forming systems. Time-lapse AFM also revealed differences in the formation of these two fibril types: thermally induced aggregation occurring more cooperatively, in keeping with a nucleation and growth process. Only short stiff-rods (<20 nm in length) formed on heating beta-lactoglobulin at pH 7, and only complex three-dimensional "amorphous"aggregates in alcohols other than TFE at this pH. Studies of all of the pH 2 fibrils from beta-lactoglobulin, by Raman and infrared spectroscopy confirmed beta-sheet as mediating the aggregation process. Interestingly, however, some evidence for de novo helix formation for the solvent-induced systems was obtained, although it remains to be seen whether this is actually incorporated into the fibril-structure. In contrast to other amyloid systems, X-ray powder diffraction provided no evidence for extensive repeating "crystalline" structures for any of the pH 2 beta-lactoglobulin fibrils. In relation to amyloid, the lactoglobulin fibrils bear more resemblance to protofilaments than to higher-order fibril structures, these latter appearing more convincingly for thermally induced insulin fibrils (pH 2) also included in the AFM study.  相似文献   

14.
The formation of amyloid-containing spherulite-like structures has been observed in some instances of amyloid diseases, as well as in amyloid fibril-containing solutions in vitro. In this article we describe the structure and kinetics of bovine insulin amyloid fibril spherulites formed in the presence and absence of different salts and at different salt concentrations. The general spherulite structure consists of radially oriented amyloid fibrils, as shown by optical microscopy and environmental scanning electron microscopy. In the center of each spherulite, a "core" of less regularly oriented material is observed, whose size decreases when the spherulites are formed in the presence of increasing concentrations of NaCl. Similarly, amyloid fibrils form faster in the presence of NaCl than in its absence. A smaller enhancement of the rate of formation with salt concentration is observed for spherulites. These data suggest that both amyloid fibril formation and random aggregation occur concurrently under the conditions tested. Changes in their relative rates result in the different-sized cores observed in the spherulites. This mechanism can be likened to that leading to the formation of spherulites of polyethylene, in agreement with observations that polypeptide chains under partially denaturing conditions can exhibit behavior not dissimilar to that of synthetic polymers.  相似文献   

15.
Self-assembly of alpha-synuclein resulting in protein aggregates of diverse morphology has been implicated in the pathogenesis of Parkinson's disease and other neurodegenerative disorders known as synucleinopathies. Apart from its biomedical relevance, this aggregation process is representative of the interconversion of an unfolded protein into nanostructures with typical amyloid features. We have used in situ tapping mode atomic force microscopy to continuously monitor the self-assembly of wild-type alpha-synuclein, its disease-related mutants A30P and A53T, and the C-terminally truncated variant alpha-synuclein(1-108). Different aggregation modes were observed depending on experimental conditions, i.e. pH, protein concentration, polyamine concentration, temperature and the supporting substrate. At pH 7.5, in the absence of the biogenic polyamines spermidine or spermine, elongated sheets 1.1(+/-0.2)nm in height and presumably representing individual beta-sheet structures, were formed on mica substrates within a few minutes. Their orientation was directed by the crystalline substructure of the substrate. In contrast, sheet formation was not observed with hydrophobic highly oriented pyrolytic graphite substrates, suggesting that negatively charged surfaces promote alpha-synuclein self-assembly. In the presence of spermidine or spermine 5.9(+/-1.0)nm high spheroidal structures were preferentially formed, sharing characteristics with similar structures previously reported for several amyloidogenic proteins and linked to neurotoxicity. alpha-Synuclein spheroid formation depended critically on polyamine binding to the C terminus, revealing a promoting effect of the C terminus on alpha-synuclein assembly in the bound state. In rare cases, fibril growth from spheroids or preformed aggregates was observed. At pH 5.0, fibrils were formed initially and incorporated into amorphous aggregates in the course of the aggregation process, providing evidence for the potential of amyloid fibril surfaces to act as nucleation sites in amorphous aggregation. This study provides a direct insight into different modes of alpha-synuclein self-assembly and identifies key factors modulating the aggregation process.  相似文献   

16.
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer’s and Parkinson’s diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs.  相似文献   

17.
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer’s and Parkinson’s diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs.  相似文献   

18.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of β2-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the β-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular β-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular β-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

19.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

20.
Although amyloid fibrils deposit with various proteins, the comprehensive mechanism by which they form remains unclear. We studied the formation of fibrils of human islet amyloid polypeptide associated with type II diabetes in the presence of various concentrations of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) under acidic and neutral pH conditions using CD, amyloid-specific thioflavin T fluorescence, fluorescence imaging with thioflavin T, and atomic force microscopy. At low pH, the formation of fibrils was promoted by HFIP with an optimum at 5% (v/v). At neutral pH in the absence of HFIP, significant amounts of amorphous aggregates formed in addition to the fibrils. The addition of HFIP suppressed the formation of amorphous aggregates, leading to a predominance of fibrils with an optimum effect at 25% (v/v). Under both conditions, higher concentrations of HFIP dissolved the fibrils and stabilized the α-helical structure. The results indicate that fibrils and amorphous aggregates are different types of precipitates formed by exclusion from water-HFIP mixtures. The exclusion occurs through the combined effects of hydrophobic interactions and electrostatic interactions, both of which are strengthened by low concentrations of HFIP, and a subtle balance between the two types of interactions determines whether the fibrils or amorphous aggregates dominate. We suggest a general view of how the structure of precipitates varies dramatically from single crystals to amyloid fibrils and amorphous aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号