首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Advanced glycation end-products (AGEs) elicit inflammatory responses via the receptor for AGEs (RAGE) and participate in the pathogenesis of diabetic complications. An earlier study showed that 3-hydroxypyridinium (3-HP), a common moiety of toxic AGEs such as glyceraldehyde-derived pyridinium (GLAP) and GA-pyridine, is essential for the interaction with RAGE. However, the physiological significance of 3-HP recognition by RAGE remains unclear. We hypothesized that pyridinoline (Pyr), a collagen crosslink containing the 3-HP moiety, could have agonist activity with RAGE. To test this hypothesis, we purified Pyr from bovine achilles tendons and examined its cytotoxicity to rat neuronal PC12 cells. Pyr elicited toxicity to PC12 cells in a concentration-dependent manner, and this effect was attenuated in the presence of either the anti-RAGE antibody or the soluble form of RAGE. Moreover, surface plasmon resonance-based analysis showed specific binding of Pyr to RAGE. These data indicate that Pyr is an intrinsic ligand for RAGE.

Abbreviations: AGEs: advanced glycation end-products; RAGE: receptor for advanced glycation end-products; DAMPs: damage-associated molecular patterns; PRR: pattern recognition receptor; TLR: toll-like receptor; GLAP: glyceraldehyde-derived pyridinium; 3-HP: 3-hydroxypyridinium; Pyr: pyridinoline; HFBA: heptafluorobutyric acid; GST: glutathione S-transferase; SPR: surface plasmon resonance; ECM: extracellular matrix; EMT: epithelial to mesenchymal transition  相似文献   


2.
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24–72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites for AGEs, with both higher- and lower-affinity sites now being apparent. Medium-term (1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.  相似文献   

3.
The receptor for advanced glycation end-products (RAGE)-mediated cellular activation through the mitogen-activated protein kinase (MAPK) cascade, activation of NF-κB and Rho family small G-proteins, cdc42/Rac, is implicated in the pathogenesis of inflammatory disorders and tumor growth/metastasis. However, the precise molecular mechanisms for the initiation of cell signaling by RAGE remain to be elucidated. In this study, proteins which directly bind to the cytoplasmic C-terminus of RAGE were purified from rat lung extracts using an affinity chromatography technique and identified to be extracellular signal-regulated protein kinase-1 and -2 (ERK-1/2). Their interactions were confirmed by immunoprecipitation of ERK-1/2 from RAGE-expressing HT1080 cell extracts with anti-RAGE antibody. Furthermore, the augmentation of kinase activity of RAGE-bound ERK upon the stimulation of cells with amphoterin was demonstrated by determining the phosphorylation level of myelin basic protein, an ERK substrate. In vitro binding studies using a series of C-terminal deletion mutants of human RAGE revealed the importance of the membrane-proximal cytoplasmic region of RAGE for the direct ERK–RAGE interaction. This region contained a sequence similar to the D-domain, a ERK docking site which is conserved in some ERK substrates including MAPK-interacting kinase-1/2, mitogen- and stress-activated protein kinase-1, and ribosomal S6 kinase. These data suggest that ERK may play a role in RAGE signaling through direct interaction with RAGE.  相似文献   

4.

Background

Functional polymorphisms in the receptor for advanced glycation end-products (RAGE) gene have been implicated in several vascular diseases. However, to date, no study investigated the association of RAGE polymorphisms with heart failure (HF).

Objective

In this study we tested the hypothesis that the 63-bp insertion/deletion, the − 374T > A (rs1800624) and the − 429T > C (rs1800625) polymorphisms in the RAGE gene might be associated with susceptibility to HF and could predict all-cause mortality in Brazilian outpatients with left ventricular systolic dysfunction.

Methods

A total of 273 consecutive HF patients (196 Caucasian- and 77 African-Brazilians) and 334 healthy blood donors (260 Caucasian- and 74 African-Brazilians) were enrolled in a tertiary care university hospital. Genotyping of RAGE polymorphisms was done by polymerase chain reaction (PCR) or PCR followed by enzyme restriction analysis.

Results

The allele, genotype and haplotype frequencies of − 374T > A and − 429T > C polymorphisms were not significantly different between HF patients and healthy blood donors in both ethnic groups. However, among African-Brazilians, the frequency of carriership of the del allele was lower in HF patients than in blood donors (2.6% vs 12.2%, respectively, p = 0.008). Patients were followed-up for a median of 38 months and the survival analysis did not reveal a consistent association between RAGE polymorphisms and all-cause death in both ethnic groups.

Conclusion

The − 374T > A and − 429T > C polymorphisms in the RAGE gene were not associated with the susceptibility and prognosis of HF. Notwithstanding, the 63-bp ins/del polymorphism might be involved in the susceptibility to HF in African-Brazilians.  相似文献   

5.
Advanced glycation end-products (AGEs) stimulate reactive oxygen species (ROS) generation and represent a risk factor for atherosclerosis, while their formation seems to be prevented by zinc. Metallothioneins (MT), zinc-binding proteins exert an antioxidant function by regulating intracellular zinc availability and protecting cells from ROS damages. +1245 A/G MT1A polymorphism was implicated in type 2 diabetes and in cardiovascular disease development as well as in the modulation of antioxidant response. The purpose of this study was to investigate the influence of +1245 A/G MT1A polymorphism on AGEs and ROS production and to verify the effect of zinc supplementation on plasma AGEs, zinc status parameters and antioxidant enzyme activity in relation to this SNP. One hundred and ten healthy subjects (72 ± 6 years) from the ZincAge study were supplied with zinc aspartate (10 mg/day for 7 weeks) and screened for +1245 MT1A polymorphism. +1245 MT1A G+ (Arginine) genotype showed higher plasma AGEs and ROS production in peripheral blood mononuclear cells (PBMCs) than G− (Lysine) one at the baseline. No significant changes after zinc supplementation were observed for AGEs, ROS and MT levels as well as for enzyme antioxidant activity in relation to the genotype. Among zinc status parameters, major increases were observed for the intracellular labile zinc (iZnL) and the NO-induced release of zinc in PBMCs, in G+ genotype as compared to G− one. In summary, +1245 G+ carriers showed increased plasma AGEs and ROS production in PBMCs at baseline and a higher improvement in iZnL after zinc intervention with respect to G− individuals.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0426-2) contains supplementary material, which is available to authorized users.  相似文献   

6.
There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.  相似文献   

7.
Secreted by tumor and stromal cells, S100 proteins exert their biological functions via the interaction with surface receptors. The most described receptor is the receptor for advanced glycation end-products (RAGE), thereby participating in the S100-dependent cell migration, invasion, tumor growth, angiogenesis and metastasis. Several approaches have been described for determining this interaction. Here we describe an easy, specific and highly reproducible ELISA-based method, by optimizing several parameters such as the binding and blocking buffer, interaction time and concentrations, directed to screen chemical and biological inhibitors of this interaction for S100A4, S100A7 and S100P proteins. The efficiency of the protocol was validated by using well described neutralizing agents of the RAGE receptor and of the S100A4 activity. The methodology described here will allow future works with other members of the S100 protein family and their receptors.  相似文献   

8.
Advanced glycation end products (AGEs) formed from glyceraldehyde (Gcer) and glycolaldehyde (Gcol) are involved in the pathogenesis of diabetic complications, via interactions with a receptor for AGEs (RAGE). In this study, we aimed to elucidate the RAGE-binding structure in Gcer and Gcol-derived AGEs and identify the minimal moiety recognized by RAGE. Among Gcer and Gcol-derived AGEs, GLAP (glyceraldehyde-derived pyridinium) and GA-pyridine elicited toxicity in PC12 neuronal cells. The toxic effects of GLAP and GA-pyridine were suppressed in the presence of anti-RAGE antibody or the soluble form of RAGE protein. Furthermore, the cytotoxicity test using GLAP analog compounds indicated that the 3-hydroxypyridinium (3-HP) structure is sufficient for RAGE-dependent toxicity. Surface plasmon resonance analysis showed that 3-HP derivatives directly interact with RAGE. These results indicate that GLAP and GA-pyridine are RAGE-binding epitopes, and that 3-HP, a common moiety of GLAP and GA-pyridine, is essential for the interaction with RAGE.  相似文献   

9.
Glycative stress, caused by the accumulation of cytotoxic and irreversibly-formed sugar-derived advanced glycation end-products (AGEs), contributes to morbidity associated with aging, age-related diseases, and metabolic diseases. In this review, we summarize pathways leading to formation of AGEs, largely from sugars and glycolytic intermediates, and discuss detoxification of AGE precursors, including the glyoxalase system and DJ-1/Park7 deglycase. Disease pathogenesis downstream of AGE accumulation can be cell autonomous due to aggregation of glycated proteins and impaired protein function, which occurs in ocular cataracts. Extracellular AGEs also activate RAGE signaling, leading to oxidative stress, inflammation, and leukostasis in diabetic complications such as diabetic retinopathy. Pharmaceutical agents have been tested in animal models and clinically to diminish glycative burden. We summarize existing strategies and point out several new directions to diminish glycative stress including: plant-derived polyphenols as AGE inhibitors and glyoxalase inducers; improved dietary patterns, particularly Mediterranean and low glycemic diets; and enhancing proteolytic capacities of the ubiquitin-proteasome and autophagy pathways that are involved in cellular clearing of AGEs.  相似文献   

10.
S100A13 is involved in several key biological functions like angiogenesis, tumor formation and cell apoptosis. It is a homodimeric protein that belongs to the S100 protein family. S100A13 is co-expressed with acidic fibroblast growth factor (FGF1) and interleukin-1α which are key angiogenesis inducers. The S100 proteins have been shown to be involved in several cellular functions such as calcium homeostasis, cell growth and differentiation dynamic of cytoskeleton. Its biological functions are mainly mediated through the receptor for advanced glycation end products (RAGE) signaling. RAGE is involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling upon binding of different ligands, such as S100 proteins, glycated proteins, and HMGB1. RAGE signaling is complex, and it depends on the cell type and concentration of the ligand. Molecular level interactions of RAGE and S100 proteins are useful to understand the RAGE signaling diversity. In this report we focus on the molecular level interactions of S100A13 and RAGE C2 domain. The binding between RAGE C2 and S100A13 is moderately strong (Kd ~ 1.3 μM). We have solved the solution structure of the S100A13–RAGE C2 complex and pronounce the interface regions in S100A13–RAGE C2 complex which are helpful for drug development of RAGE induced diseases.  相似文献   

11.
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface macromolecule that plays a central role in the etiology of diabetes complications, inflammation, and neurodegeneration. The cytoplasmic domain of RAGE (C-terminal RAGE; ctRAGE) is critical for RAGE-dependent signal transduction. As the most membrane-proximal event, mDia1 binds to ctRAGE, and it is essential for RAGE ligand-stimulated phosphorylation of AKT and cell proliferation/migration. We show that ctRAGE contains an unusual α-turn that mediates the mDia1-ctRAGE interaction and is required for RAGE-dependent signaling. The results establish a novel mechanism through which an extracellular signal initiated by RAGE ligands regulates RAGE signaling in a manner requiring mDia1.  相似文献   

12.

Objective

To study the putative effects of Advanced Oxidation Protein Products (AOPPs) and Advanced Glycation End Products (AGEs) in the development and progression of cardiovascular disease (CVD).

Methodology

AGEs, AOPPs, e-NOS, lipid profile, circulating stress and inflammatory biomarkers were evaluated among fifty cardiovascular patients and fifty controls. Independent student’s t-test was done for statistical analysis.

Results

The malondialdehyde mean level in CVD patients (5.45?nmol/ml) was significantly higher than control (1.36?nmol/ml) (p value?=?0.018). Nitric oxide in CVD patients (55.72?ng/ml) was remarkably increased as compared to normal subjects (19.19?ng/ml). A significant change in the mean serum level of AGEs in CVD patients (2.74?ng/ml) and normal individuals (0.85?ng/ml) was recorded (p value?=?0.000). The AOPPs also showed significant increased levels in CVD group (132.07?ng/ml) in comparison with normal subjects (83.05?ng/ml) (p value?=?0.011). The mean eNOS serum level in CVD group (15.50?U/L) was higher than control group (11.28?U/L) (p value?=?0.004). Cardiovascular disease patients, in comparison with healthy controls, showed increased level of total cholesterol (5.48?mmol/L vs 4.45?mmol/L), triglycerides (2.59?mmol/L vs 1.24?mmol/L), and low density lipoprotein (2.47?mmol/L vs 2.31?mmol/L) along with decrease in high density lipoprotein (1.39?mmol/L vs 1.74?mmol/L). The mean MMP-11 serum levels in CVD group (98.69?ng/ml) was almost double of control group (45.60?ng/ml) (p value?=?0.017). The mean serum level of TNF-α and IL1-α were 32.16?pg/ml and 6.64?pg/ml in CVD patient. The significant decreasing trend of SOD (p value?=?0.041), CAT (p value?=?0.018), GSH (p value?=?0.036) and GRx (p value?=?0.029) but increasing drift of GPx (0.023) level was observed in CVD patients.

Conclusion

This study provides strong evidence that CVD patients presented with elevated oxidative stress, enhanced inflammation and lipid profile in their serum. Therefore, the study strongly approves that AGEs, AOPPs, inflammatory and lipoxidative biomarkers hold predictive potential in causing and aggravating the disease, thus by controlling these factors CVD progression can be inhibited.  相似文献   

13.
Glycosylation is one of the most complex post-translational modifications and may have significant influence on the proper function of the corresponding proteins. Bacteria and yeast are, because of easy handling and cost reasons, the most frequently used systems for recombinant protein expression. Bacteria generally do not glycosylate proteins and yeast might tend to hyperglycosylate. Insect cell- and mammalian cell-based expression systems are able to produce complex N-glycosylation structures but are more complex to handle and more expensive. The nonpathogenic protozoa Leishmania tarentolae is an easy-to-handle alternative expression system for production of proteins requiring the eukaryotic protein folding machinery and post-translational modifications. We used and evaluated the system for the secretory expression of extracellular domains from human glycoprotein VI and the receptor for advanced glycation end products from rat. Both proteins were well expressed and homogeneously glycosylated. Analysis of the glycosylation pattern identified the structure as the conserved core pentasaccharide Man3GlcNac2.  相似文献   

14.
Two dihydroflavonol glycosides, engeletin and astilbin, were isolated from an EtOAc extract of the leaves of Stelechocarpus cauliflorus R.E. Fr. (Annonaceae). The inhibitory activity of engeletin against a recombinant human aldose reductase (IC50 value=1.16 μM) was twice that of quercetin as a positive control (2.48 μM), and 23 times greater than that of astilbin (26.7 μM). Engeletin inhibited the enzyme uncompetitively. Astilbin was about as potent as the positive control, quercetin, in its inhibition of advanced glycation end-products formation. These flavonoids displayed therapeutic potential in the prevention and treatment of diabetic complications.  相似文献   

15.
Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown. Using standardized procedures and a variety of AGE measures, the present study aimed to characterize the AGEs that bind to RAGE and their formation kinetics in vitro. To produce AGEs with varying RAGE binding affinity, bovine serum albumin (BSA) AGEs were prepared with 0.5M glucose, fructose, or ribose at times of incubation from 0 to 12 weeks or for up to 3 days with glycolaldehyde or glyoxylic acid. The AGE-BSAs were characterized for RAGE binding affinity, fluorescence, absorbance, carbonyl content, reactive free amine content, molecular weight, pentosidine content, and N-epsilon-carboxymethyl lysine content. Ribose-AGEs bound RAGE with high affinity within 1 week of incubation in contrast to glucose- and fructose-AGE, which required 12 and 6 weeks, respectively, to generate equivalent RAGE ligands (IC50=0.66, 0.93, and 1.7 microM, respectively). Over time, all of the measured AGE characteristics increased. However, only free amine content robustly correlated with RAGE binding affinity. In addition, detailed protocols for the generation of AGEs that reproducibly bind RAGE with high affinity were developed, which will allow for further study of the RAGE-AGE interaction.  相似文献   

16.
The receptor for advanced glycation end products (RAGE) overexpression was suggested to be associated with prostate cancer development and poor prognosis. In this study, we focused on the correlations between the clinicopathological characteristics and susceptibility of prostate cancer and RAGE single-nucleotide polymorphisms (SNPs). In 579 prostate cancer patients, the RAGE SNPs rs1800625, rs1800624, rs2070600 and rs184003 in patients with or without grade group upgrade were analysed with real-time polymerase chain reaction. The results demonstrated that the prostate cancer patients who carried the RAGE SNPs rs2070600 ‘GA’ genotypic variants were significantly associated with lower risk to develop grade group upgrade. Moreover, patients with the RAGE rs1800625 ‘TC + CC’ genotypic variants were associated with higher risk of perineural invasion. In 343 prostate cancer patients who carried the RAGE rs1800625 ‘TC + CC’ genotype without grade group upgrade were correlated with higher risk of biochemical recurrence and perineural invasion. In the analysis of TCGA database, significant differences of the RAGE mRNA level were found between the normal controls and prostate cancer patients (p < 0.0001), and the pathologic stage N1 and N0 patients (p = 0.0027). The prostate cancer patients with high RAGE expression were associated with lower overall survival rate (p = 0.025). In conclusion, our results have revealed that the RAGE SNPs rs2070600 and rs1800625 were associated with the grade group upgrade of prostate cancer and clinical status. The RAGE polymorphisms may provide as a pivotal predictor to evaluate prostate cancer disease progression and prognosis.  相似文献   

17.
Familial amyloidotic polyneuropathy is a neurodegenerative disorder characterized by systemic extracellular deposition of transthyretin (TTR) amyloid fibrils. The latter have been proposed to trigger neurodegeneration through engagement of the receptor for advanced glycation end products (RAGE). Here we show that TTR interaction with RAGE is conserved across mouse and human species and is not dependent on RAGE glycosylation. Moreover, strand D of TTR structure seems important for the TTR-RAGE interaction as well as a motif in RAGE (residues 102-118) located within the V-domain; this motif suppressed TTR aggregate-induced cytotoxicity in cell culture.  相似文献   

18.
Henle T 《Amino acids》2005,29(4):313-322
Summary. The Maillard reaction or nonenzymatic browning is of outstanding importance for the formation of flavour and colour of heated foods. Corresponding reactions, also referred to as “glycation”, are known from biological systems, where the formation of advanced glycation endproducts (AGEs) shall play an important pathophysiological role in diabetes and uremia. In this review, pathways leading to the formation of individual protein-bound lysine and arginine derivatives in foods are described and nutritional consequences resulting from this posttranslational modifications of food proteins are discussed.  相似文献   

19.
20.
Advanced glycation end-products (AGEs) are associated with many pathogenic disorders such as Alzheimer’s disease, pathogenesis of diabetes, atherosclerosis or endothelial dysfunction leading to cardiovascular events. Clusiaceae and Calophyllaceae families are rich in compounds like polyphenols which are able to inhibit their formation and are therefore of great interest. Calophyllum flavoramulum Hend. & Wyatt-Sm., a native Malaysian plant, was selected after an anti-AGEs screening conducted on DCM and MeOH extracts from plants belonging to these aforementioned families. In a first study, bioguided fractionation of the MeOH leaf extract of C. flavoramulum afforded amentoflavone, 3-methoxy-2-hydroxyxanthone, 3,4-dihydroxy-tetrahydrofuran-3-carboxylic acid, quercitrin, 3,4-dihydroxybenzoic acid, canophyllol and apetalactone. Amentoflavone and 3-methoxy-2-hydroxyxanthone were found to be very potent (IC50 = 0.05 and 0.06 mM respectively), while anti-AGEs activities of quercitrin and 3,4-dihydroxybenzoic acid appeared as moderately strong (IC50 = 0.5 mM). In a second study, a systematic phytochemical study of the cyclohexane, DCM and EtOAc extracts obtained from the same plant was conducted to isolate the following products: flavoramulone, 6-deoxyjacareubin, rheediachromenoxanthone, 2,3-dihydroamentoflavone and benzoic acid. 3,4-Dihydroxy-tetrahydrofuran-3-carboxylic acid and flavoramulone were isolated for the first time and their structures were identified by means of IR, MS and NMR spectrometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号