共查询到20条相似文献,搜索用时 0 毫秒
1.
Merkus D Duncker DJ Chilian WM 《American journal of physiology. Heart and circulatory physiology》2002,283(5):H1915-H1921
Coronary tone is determined by a balance between endogenously produced endothelin and metabolic dilators. We hypothesized that coronary vasodilation during augmented metabolism is the net result of decreased endothelin production and increased production of vasodilators. Isolated rat myocytes were stimulated at 0, 200, and 400 beats/min to modify metabolism. Supernatant from these preparations was added to isolated coronary arterioles with and without blocking vasoactive pathways (adenosine, bradykinin, and endothelin). Chronically instrumented swine were studied while resting and running on a treadmill before and after endothelin type A (ET(A)) receptor blockade. The vasodilatory properties of the supernatant increased with increased stimulation frequencies. Combined blockade of adenosine and bradykinin receptors abolished vasodilation in response to supernatant of stimulated myocytes. ET(A) blockade increased vasodilation to supernatant of unstimulated myocytes but did not affect dilation to supernatant of myocytes stimulated at 400 beats/min. In vivo, ET(A) blockade resulted in coronary vasodilation at rest, which waned during exercise. Thus endothelin has a tonic constrictor influence through the ET(A) receptor at low myocardial metabolic demand but its influence decreased during increased metabolism. 相似文献
2.
David N Proctor Dennis W Koch Sean C Newcomer Khoi U Le Urs A Leuenberger 《Journal of applied physiology》2003,95(5):1963-1970
The purpose of the present study was to test the hypothesis that leg blood flow responses during leg cycle ergometry are reduced with age in healthy non-estrogen-replaced women. Thirteen younger (20-27 yr) and thirteen older (61-71 yr) normotensive, non-endurance-trained women performed both graded and constant-load bouts of leg cycling at the same absolute exercise intensities. Leg blood flow (femoral vein thermodilution), mean arterial pressure (MAP; radial artery), mean femoral venous pressure, cardiac output (acetylene rebreathing), and blood O2 contents were measured. Leg blood flow responses at light workloads (20-40 W) were similar in younger and older women. However, at moderate workloads (50-60 W), leg blood flow responses were significantly attenuated in older women. MAP was 20-25 mmHg higher (P < 0.01) in the older women across all work intensities, and calculated leg vascular conductance (leg blood flow/estimated leg perfusion pressure) was lower (P < 0.05). Exercise-induced increases in leg arteriovenous O2 difference and O2 extraction were identical between groups (P > 0.6). Leg O2 uptake was tightly correlated with leg blood flow across all workloads in both subject groups (r2 = 0.80). These results suggest the ability of healthy older women to undergo limb vasodilation in response to submaximal exercise is impaired and that the legs are a potentially important contributor to the augmented systemic vascular resistance seen during dynamic exercise in older women. 相似文献
3.
Aerobic exercise training reduces plasma endothelin-1 concentration in older women. 总被引:10,自引:0,他引:10
Seiji Maeda Takumi Tanabe Takashi Miyauchi Takeshi Otsuki Jun Sugawara Motoyuki Iemitsu Shinya Kuno Ryuichi Ajisaka Iwao Yamaguchi Mitsuo Matsuda 《Journal of applied physiology》2003,95(1):336-341
Endothelial function deteriorates with aging. On the other hand, exercise training improves the function of vascular endothelial cells. Endothelin-1 (ET-1), which is produced by vascular endothelial cells, has potent constrictor and proliferative activity in vascular smooth muscle cells and, therefore, has been implicated in regulation of vascular tonus and progression of atherosclerosis. We previously reported significantly higher plasma ET-1 concentration in middle-aged than in young humans, and recently we showed that plasma ET-1 concentration was significantly decreased by aerobic exercise training in healthy young humans. We hypothesized that plasma ET-1 concentration increases with age, even in healthy adults, and that lifestyle modification (i.e., exercise) can reduce plasma ET-1 concentration in previously sedentary older adults. We measured plasma ET-1 concentration in healthy young women (21-28 yr old), healthy middle-aged women (31-47 yr old), and healthy older women (61-69 yr old). The plasma level of ET-1 significantly increased with aging (1.02 +/- 0.08, 1.33 +/- 0.11, and 2.90 +/- 0.20 pg/ml in young, middle-aged, and older women, respectively). Thus plasma ET-1 concentration was markedly higher in healthy older women than in healthy young or middle-aged women (by approximately 3- and 2-fold, respectively). In healthy older women, we also measured plasma ET-1 concentration after 3 mo of aerobic exercise (cycling on a leg ergometer at 80% of ventilatory threshold for 30 min, 5 days/wk). Regular exercise significantly decreased plasma ET-1 concentration in the healthy older women (2.22 +/- 0.16 pg/ml, P < 0.01) and also significantly reduced their blood pressure. The present study suggests that regular aerobic-endurance exercise reduces plasma ET-1 concentration in older humans, and this reduction in plasma ET-1 concentration may have beneficial effects on the cardiovascular system (i.e., prevention of progression of hypertension and/or atherosclerosis by endogenous ET-1). 相似文献
4.
P Odetti F Monacelli D Storace C Robaudo S Rossi G Deferrari T Barreca 《Hormones et métabolisme》2006,38(12):817-820
Advanced glycation end-products (AGEs), which accumulate in the blood and tissues of patients with chronic renal failure (CRF) undergoing chronic hemodialysis, play an important role in the pathogenesis of uremic complications. Endothelin 1 (ET1), a 21-amino acid peptide with vasoconstricting and mitogenic properties, is an important factor in the endothelial dysfunction occurring in uremia. The circulating levels of both AGEs and ET1 have been reported to be increased in chronic renal failure. In the present study we evaluated the possible relationship between pentosidine and ET1 plasma levels in CRF patients undergoing chronic hemodialysis treatment. The plasma concentrations of "free" and bound pentosidine (HPLC methods) and endothelin-1 (RIA method) were measured before the hemodialysis session in 40 nondiabetic CRF patients (22 males and 18 females; 54+/-3 years) on chronic hemodialysis for at least 1 year. Forty age- and sex-matched normal subjects served as a control group. In hemodialyzed patients, the overall pentosidine residues and pentosidine-free adduct plus pentosidine-free adduct bound reversibly to protein levels (24.9+/-2.04 pmol/mg protein and 110.5+/-5.9 pmol/ml, respectively) were significantly higher than those recorded in normal subjects (2.0+/-0.2 pmol/mg protein and 0.7+/-0.2 pmol/ml, respectively ). Endothelin-1 was also significantly (p<0.01) increased in CRF patients (10.6+/-0.4 pmol/ml in CRF patients and 2.7+/-0.3 pmol/ml in normal subjects). A significant positive correlation (p<0.01) was seen between "total" pentosidine (pentosidine residues and pentosidine-free adduct plus pentosidine-free adduct bound reversibly to protein) levels and endothelin-1 plasma values. The correlation between pentosidine and endothelin-1 provides further evidence that some AGEs exert a detrimental effect on the vascular endothelium, thereby contributing to the hypertension and other cardiovascular damage seen in CRF patients. 相似文献
5.
Parker BA Smithmyer SL Jarvis SS Ridout SJ Pawelczyk JA Proctor DN 《American journal of physiology. Heart and circulatory physiology》2007,292(2):H1148-H1156
Inhibition of a sympathetic stimulus (i.e., sympatholysis) during forearm exercise is reduced with age in women. This age-related alteration has not been characterized in the lower extremity vasculature of women, and the potential for blunting of the conduit artery dilatory response to a sudden increase in shear stress [flow-mediated dilation (FMD)] has not been examined in older adults of either sex. In the present study, we assessed popliteal artery diameter and velocity (Doppler ultrasound) in 16 young (23 +/- 1 yr) and 14 older (69 +/- 1 yr) women after 5 min of distal calf occlusion (FMD), 3 min of hand immersion in ice water [cold pressor test (CPT)], and 5 min of distal calf occlusion combined with hand immersion in ice water (FMD+CPT). Peak popliteal conductance after 5-min ischemia was not significantly different in young vs. older women. During the combined stimulus (FMD+CPT), the magnitude of vasoconstriction in the calf (reduction in peak popliteal artery conductance) was similar (5-8%), despite reduced resting adrenergic sensitivity to CPT [young (Y): -27.3 +/- 3.8%; older (O): -15.8 +/- 2.2%; P < 0.05] and blunted muscle sympathetic nerve activity responses to CPT (Y: 12.7 +/- 3.6 bursts/min; O: 7.8 +/- 2.5 bursts/min; P < 0.05) in older women. Popliteal FMD, normalized to the shear stimulus, was attenuated by 60-70% in older women. Peak popliteal diameter, measured during the combined stimulus (FMD+CPT), was blunted in young but not in older women (Y FMD: 5.5 +/- 0.1 mm; Y FMD+CPT: 5.4 +/- 0.1 mm; P = 0.03; O FMD: 5.8 +/- 0.2 mm; O FMD+CPT: 5.8 +/- 0.2 mm). These results confirm previous findings of diminished reactivity in the conduit arteries of older humans and provide the first evidence of reduced sympatholysis in the leg resistance vasculature of older women. 相似文献
6.
Bussey CT Kolka CM Rattigan S Richards SM 《American journal of physiology. Heart and circulatory physiology》2011,301(1):H79-H86
Recent studies have shown that adiponectin is able to increase nitric oxide (NO) production by the endothelium and relax preconstricted isolated aortic rings, suggesting that adiponectin may act as a vasodilator. Endothelin-1 (ET-1) is a potent vasoconstrictor, elevated levels of which are associated with obesity, type 2 diabetes, hypertension, and cardiovascular disease. We hypothesized that adiponectin has NO-dependent vascular actions opposing the vasoconstrictor actions of ET-1. We studied the vascular and metabolic effects of a physiological concentration of adiponectin (6.5 μg/ml) on hooded Wistar rats in the constant-flow pump-perfused rat hindlimb. Adiponectin alone had no observable vascular activity; however, adiponectin pretreatment and coinfusion inhibited the increase in perfusion pressure and associated metabolic stimulation caused by low-dose (1 nM) ET-1. Adiponectin was not able to oppose vasoconstriction when infusion was commenced after ET-1. This is in contrast to the NO donor sodium nitroprusside, which significantly reduced the pressure due to established ET-1 vasoconstriction, suggesting dissociation of the actions of adiponectin and NO. In addition, adiponectin had no effect on vasoconstriction caused by either high-dose (20 nM) ET-1 or low-dose (50 nM) norepinephrine. Our findings suggest that adiponectin has specific, apparently NO-independent, vascular activity to oppose the vasoconstrictor effects of ET-1. The hemodynamic actions of adiponectin may be an important aspect of its insulin-sensitizing ability by regulating access of insulin and glucose to myocytes. Imbalance in the relationship between adiponectin and ET-1 in obesity may contribute to the development of insulin resistance and cardiovascular disease. 相似文献
7.
Pressure and flow-dependent vascular tone. 总被引:6,自引:0,他引:6
Most small arteries are partially constricted in vivo. After excluding neurogenic, metabolic, and circulating as well as local hormonal influences, a sizeable component of tone persists which is commonly called basal tone. In the absence of such tone, cardiac output would be insufficient to maintain the circulation. This review focuses on the contribution of stretch, induced by changes in transmural pressure, and flow acting through shear forces exerted at the blood vessel wall interface, to basal tone. Evidence concerning the cellular processes that may be activated by these physical forces--the mechanotransducing systems--are discussed. The involvement of the endothelium and the role of change in membrane potential are evaluated and lead to the conclusion that pressure and flow effects do not depend exclusively on the release of endothelial factors nor the activation of voltage-gated Ca2+ channels. Stretch/pressure-induced changes in tone show distinctive pharmacological profiles. They are dependent on extracellular calcium and yet in many instances are only weakly affected by organic Ca(2+)-entry inhibitors. Flow-dependent vascular effects, both constrictor and dilator, are both exquisitely sensitive to changes in extracellular Na+ and appear to be related to its transmembrane gradient. Stretch/pressure cause activation of protein kinase C, an intracellular modulator of Ca(2+)-dependent contractile processes. The existence of separate and distinctive cellular sensing and responding systems to pressure and flow raise the possibility that the smooth muscle tone of the vascular system can be influenced independently by the pressure and rate of flow of the blood. 相似文献
8.
We found that sparse and confluent C6 glioma cells differ both in GM3 content, which increases with cell density, and in endothelin-1 (ET-1)-induced phosphoinositide hydrolysis, which was markedly higher in the sparse cells than in the confluent. Also after manipulation of the cellular GM3 content through treatment with exogenous GM3 or with drugs known to affect GM3 metabolism, the ET-1 effect was inversely related to GM3 cellular levels. Cell treatment with an anti-GM3 mAb resulted in the enhancement of ET-1-induced phospholipase C activation and restored the capacity of GM3-treated cells to respond to ET-1. These findings suggest that the GM3 ganglioside represents a physiological modulator of ET-1 signaling in glial cells. 相似文献
9.
Dantas AP Igarashi J Michel T 《American journal of physiology. Heart and circulatory physiology》2003,284(6):H2045-H2052
Sphingosine-1-phosphate (S1P) is a platelet-derived lipid mediator that activates the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells. However, the role of S1P in endothelium-dependent vasodilation and the signaling pathways elicited by S1P in intact vessels are largely unknown. We found that S1P induces dose-dependent transient relaxation of isolated pressurized mesenteric arterioles (EC(50) 10 +/- 3 nM); maximal vasodilation (55 +/- 8%) is seen approximately 2 min after S1P addition and returns to baseline by 5 min. S1P promotes comparable responses in arterioles from wild-type but not eNOS(null) mice. S1P-induced vasodilation is abrogated by removal of endothelium or by the addition of the NOS inhibitor N(omega)-monomethyl-l-arginine but is not affected by the cyclooxygenase inhibitor indomethacin, nor by the blockade of K(+) channels by using 4-aminopyridine. S1P-induced vasodilation is attenuated by pertussis toxin, by the phosphoinositide 3-kinase (PI3-kinase) inhibitor wortmannin, and by the calcium chelator BAPTA. With the use of high-sensitivity protein immunoblots in extracts from single pressurized vessels, we found that S1P, but not bradykinin, promotes the phosphorylation of eNOS at Ser(1179). Maximum S1P-induced eNOS Ser(1179) phosphorylation was reached at the time of maximum vasorelaxation, but enzyme phosphorylation persisted for several minutes after vasodilation had resolved. Thus regulatory pathways distinct from eNOS Ser(1179) dephosphorylation serve to terminate agonist-promoted vasorelaxation. Taken together, our findings demonstrate that S1P, an important intercellular mediator of platelet-vessel wall interactions, is a effective arteriolar vasodilator that acts via G protein-dependent, calcium-sensitive, and PI3-kinase-modulated signaling pathways. 相似文献
10.
Gao Z Wilson TE Drew RC Ettinger J Monahan KD 《American journal of physiology. Heart and circulatory physiology》2012,302(1):H312-H318
Cardiovascular-related mortality increases in the cold winter months, particularly in older adults. Previously, we reported that determinants of myocardial O(2) demand, such as the rate-pressure product, increase more in older adults compared with young adults during cold stress. The aim of the present study was to determine if aging influences the coronary hemodynamic response to cold stress in humans. Transthoracic Doppler echocardiography was used to noninvasively measure peak coronary blood velocity in the left anterior descending artery before and during acute (20 min) whole body cold stress in 10 young adults (25 ± 1 yr) and 11 older healthy adults (65 ± 2 yr). Coronary vascular resistance (diastolic blood pressure/peak coronary blood velocity), coronary perfusion time fraction (coronary perfusion time/R-R interval), and left ventricular wall stress were calculated. We found that cooling (via a water-perfused suit) increased left ventricular wall stress, a primary determinant of myocardial O(2) consumption, in both young and older adults, although the magnitude of this increase was nearly twofold greater in older adults (change of 9.1 ± 3.5% vs. 17.6 ± 3.2%, P < 0.05, change from baseline in young and older adults and young vs. older adults). Despite the increased myocardial O(2) demand during cooling, coronary vasodilation (decreased coronary vascular resistance) occurred only in young adults (3.22 ± 0.23 to 2.85 ± 0.18 mmHg·cm(-1)·s(-1), P < 0.05) and not older adults (3.97 ± 0.24 to 3.79 ± 0.27 mmHg·cm(-1)·s(-1), P > 0.05). Consistent with a blunted coronary vascular response, absolute coronary perfusion time tended to decrease (P = 0.13) and coronary perfusion time fraction decreased (P < 0.05) during cooling in older adults but not young adults. Collectively, these data suggest that older adults demonstrate an altered coronary hemodynamic response to acute cold stress. 相似文献
11.
D'Angelo G Pollock JS Pollock DM 《American journal of physiology. Heart and circulatory physiology》2006,290(3):H1251-H1258
Experiments were designed to determine the influence of endothelin A (ET(A)) receptors on the pressor response to acute environmental stress in Dahl salt-resistant (DR) and Dahl-sensitive (DS) rats. Mean arterial pressure (MAP) was chronically monitored by telemetry before and after treatment with the selective ET(A) receptor antagonist ABT-627. Rats were restrained and subjected to pulsatile air jet stress (3 min). In untreated animals, the total pressor response (area under the curve) to acute stress was not different between DR vs. DS rats (8.1 +/- 1.7 vs. 15.6 +/- 2.6 mmHg x 3 min, P = 0.10). Conversely, treatment with ABT-627 potentiated the total pressor response only in DR rats (36.3 +/- 6.2 vs. 22.6 +/- 5.9 mmHg x 3 min, DR vs. DS, P < 0.05). Treatment with ABT-627 allowed greater responses in anesthetized DR rats to exogenous phenylephrine (1-4 microg/kg) during ganglionic blockade (P < 0.05) and produced a significant increase in plasma norepinephrine at baseline and during stress in conscious DR rats compared with untreated animals (P < 0.05). ET(A) receptor blockade had no effect on these responses in DS rats. Our results suggest that endothelin-1 can inhibit alpha-adrenergic-mediated effects in DR, but not DS rats, consistent with the hypothesis that ET(A) receptor activation functions to reduce sympathetic nerve activity and responses in vascular smooth muscle to sympathetic stimulation. 相似文献
12.
Endothelin-1 (ET-1) is a vasoconstricting and mitogenic peptide released from vascular endothelial cells under normal and pathophysiological conditions, and synthesis and secretion of ET-1 are stimulated by cytokines. Cardiotrophin-1 (CT-1) is a new member of the interleukin-6-type cytokines that induce biological actions through the glycoprotein (gp) 130. The present study was designed to determine the presence of CT-1 and the gp130 cytokine system in vascular endothelial cells and to investigate whether CT-1 stimulates synthesis and secretion of ET-1 in the vascular endothelial cells. We first sought to determine gene expression and immunoreactivity of CT-1, gp130 and ET-1 in cultured canine aortic endothelial cells (CAECs) using Northern blot analysis and immunocytochemistry, which revealed the presence of CT-1 and gp130 together with ET-1 in CAECs. CT-1 increased ET-1 gene expression in CAECs, and stimulated ET-1 secretion from CAECs in a dose-dependent manner. Furthermore, inhibition of gp130 by monoclonal antibody attenuated ET-1 secretion from CAECs, suggesting that actions of CT-1 on the secretion of ET-1 are mediated through gp130 receptor system. The present study, therefore, reports the presence of CT-1 and gp130 in vascular endothelial cells and mechanisms of secretion of ET-1 related to this cytokine system. 相似文献
13.
Kristen L Jablonski Douglas R Seals Iratxe Eskurza Kevin D Monahan Anthony J Donato 《Journal of applied physiology》2007,103(5):1715-1721
Resting whole leg blood flow and vascular conductance decrease linearly with advancing age in healthy adult men. The potential role of age-related increases in oxidative stress in these changes is unknown. Resting leg blood flow during saline and ascorbic acid infusion was studied in 10 young (25 +/- 1 yr) and 11 older (63 +/- 2 yr) healthy normotensive men. Plasma oxidized LDL, a marker of oxidative stress, was greater in the older men (P < 0.05). Absolute resting femoral artery blood flow at baseline (iv saline control infusion) was 25% lower in the older men (238 +/- 25 vs. 316 +/- 38 ml/min; P < 0.05), and it was inversely related to plasma oxidized LDL (r = -0.56, P < 0.01) in all subjects. Infusion of supraphysiological concentrations of ascorbic acid increased femoral artery blood flow by 37% in the older men (to 327 +/- 52 ml/min; P < 0.05), but not in the young men (352 +/- 41 ml/min; P = 0.28), thus abolishing group differences (P = 0.72). Mean arterial blood pressure was greater in the older men at baseline (86 +/- 4 vs. 78 +/- 2 mmHg; P < 0.05), but it was unaffected by ascorbic acid infusion (P >/= 0.70). As a result, the lower baseline femoral artery blood flow in the older men was mediated solely by a 32% lower femoral artery vascular conductance (P < 0.05). Baseline femoral vascular conductance also was inversely related to plasma oxidized LDL (r = -0.65, P < 0.01). Ascorbic acid increased femoral vascular conductance by 36% in the older men (P < 0.05) but not in the young men (P = 0.31). In conclusion, ascorbic acid infused at concentrations known to scavenge reactive oxygen species restores resting femoral artery blood flow in healthy older adult men by increasing vascular conductance. These results support the hypothesis that oxidative stress plays a major role in the reduced resting whole leg blood flow and increased leg vasoconstriction observed with aging in men. 相似文献
14.
Incubation of big endothelin-3 (big ET-3(1-41)) with the membrane fraction obtained from cultured endothelial cells (ECs) resulted in an increase in immunoreactive-ET (IR-ET). This increasing activity was markedly suppressed by phosphoramidon, which is known to inhibit the conversion of big ET-1(1-39) to ET-1(1-21). Reverse-phase HPLC of the incubation mixture of the membrane fraction with big ET-3 revealed one major IR-ET component corresponding to the elution position of synthetic ET-3(1-21). When the cultured ECs were incubated with big ET-3, a conversion to the mature ET-3, as well as an endogenous ET-1 generation, was observed. Both responses were markedly suppressed by phosphoramidon. By the gel filtration of 0.5% CHAPS-solubilized fraction of membrane pellets of ECs, the molecular mass of the proteinase which converts big ET-1 and big ET-3 to their mature form was estimated to be 300-350 kDa. Phosphoramidon almost completely abolished both converting activities of the proteinase. We conclude that the above type of phosphoramidon-sensitive metalloproteinase functions as an ET-converting enzyme to generate the mature form from big ET-1 and big ET-3 in ECs. 相似文献
15.
Colin N Young Michael E Stillabower Angela DiSabatino William B Farquhar 《Journal of applied physiology》2006,101(5):1362-1367
Venous compliance is lower in older adults compared with younger adults. It is possible that alterations in venous smooth muscle tone and responsiveness may contribute to the age-related differences in venous compliance. To determine the effects of sympathetic activation [cold pressor test (cold pressor test); rhythmic ischemic handgrip (rhythmic ischemic handgrip)] and endothelium-independent decreases in smooth muscle tone [sublingual nitroglycerin (nitroglycerin)] on venous compliance in young and older adults, forearm and calf venous compliance was measured in 12 young (22 +/- 1 yr) and 12 old (65 +/- 1 yr) supine subjects using venous occlusion plethysmography. Venous compliance was assessed at baseline, during the cold pressor test and rhythmic ischemic handgrip tests, and after nitroglycerin administration. All pressure-volume relationships were modeled with a quadratic regression equation, and beta1 and beta2 were used as indexes of venous compliance. A repeated-measures ANOVA was used to determine the effect of the age and trial on venous compliance. Calf regression parameters beta1 (0.0639 +/- 0.0126 vs. 0.0503 +/- 0.0059, young vs. older; P < 0.05) and beta2 (-0.00054 +/- 0.00011 vs. -0.00041 +/- 0.00005, young vs. older; P < 0.05) were significantly less in older adults at baseline. Similarly, forearm regression parameters, beta1 and beta2 were lower in older adults at baseline. Venous compliance was not effected by the cold pressor test test, rhythmic ischemic handgrip, or sublingual nitroglycerin in either group. Data suggest that forearm and calf venous compliance is lower in older adults compared with young. However, this difference probably cannot be explained by alterations in smooth muscle tone or responsiveness. 相似文献
16.
Gentilcore D Meyer JH Rayner CK Horowitz M Jones KL 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,295(2):R472-R477
Postprandial hypotension occurs frequently, and current management is suboptimal. Recent studies suggest that the magnitude of the fall in postprandial blood pressure (BP) may be attenuated by gastric distension. The aim of this study was to determine the effect of gastric distension on the hypotensive response to intraduodenal (ID) glucose. Eight healthy subjects (5 males, 3 females, aged 65-76 years) received an ID infusion of either 1) 50 g glucose in 300 ml saline (ID glucose) over 60 min (t=0-60 min), 2) 50 g glucose in 300 ml saline over 60 min and intragastric (4) infusion of 500 ml water between t=7-10 min (IG water and ID glucose), or 3) ID saline (0.9%) infusion over 60 min and IG infusion of 500 ml water (IG water and ID saline) all followed by ID saline infusion for another 60 min (t=60-120 min) on three separate days. BP and heart rate (HR) were measured. Gastric emptying (GE) of the IG water was quantified by two-dimensional ultrasonography. Between t=0-60 min, systolic and diastolic BP was greater (P<0.05 for both) with IG water and ID saline compared with IG water and ID glucose, and less (P<0.05 for both) with ID glucose compared with IG water and ID glucose. These effects were evident at relatively low IG volumes (approximately 300 ml). GE was faster with IG water and ID saline when compared with IG water and ID glucose. We conclude that, in healthy older subjects, IG administration of water markedly attenuates the hypotensive response to ID glucose, presumably as a result of gastric distension. 相似文献
17.
18.
19.
Tawfik HE Schnermann J Oldenburg PJ Mustafa SJ 《American journal of physiology. Heart and circulatory physiology》2005,288(3):H1411-H1416
The vascular response to adenosine and its analogs is mediated by four adenosine receptors (ARs), namely, A(1), A(2A), A(2B), and A(3). A(2A)ARs and/or A(2B)ARs are involved in adenosine-mediated vascular relaxation of coronary and aortic beds. However, the role of A(1)ARs in the regulation of vascular tone is less well substantiated. The aim of this study was to determine the role of A(1)ARs in adenosine-mediated regulation of vascular tone. A(1)AR-knockout [A(1)AR((-/-))] mice and available pharmacological tools were used to elucidate the function of A(1)ARs and the impact of these receptors on the regulation of vascular tone. Isolated aortic rings from A(1)AR((-/-)) and wild-type [A(1)AR((+/+))] mice were precontracted with phenylephrine, and concentration-response curves for adenosine and its analogs, 5'-N-ethyl-carboxamidoadenosine (NECA, nonselective), 2-chloro-N(6)-cyclopentyladenosine (CCPA, A(1)AR selective), 2-(2-carboxyethyl)phenethyl amino-5'-N-ethylcarboxamido-adenosine (CGS-21680, A(2A) selective), and 2-chloro-N(6)-3-iodobenzyladenosine-5'-N-methyluronamide (Cl-IBMECA, A(3) selective) were obtained to determine relaxation. Adenosine and NECA (0.1 microM) caused small contractions of 13.9 +/- 3.0 and 16.4 +/- 6.4%, respectively, and CCPA at 0.1 and 1.0 microM caused contractions of 30.8 +/- 4.3 and 28.1 +/- 3.9%, respectively, in A(1)AR((+/+)) rings. NECA- and CCPA-induced contractions were eliminated by 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, selective A(1)AR antagonist). Adenosine, NECA, and CGS-21680 produced an increase in maximal relaxation in A(1)AR((-/-)) compared with A(1)AR((+/+)) rings, whereas Cl-IBMECA did not produce contraction in either A(1)AR((+/+)) or A(1)AR((-/-)) rings. CCPA-induced contraction at 1.0 microM was eliminated by the PLC inhibitor U-73122. These data suggest that activation of A(1)ARs causes contraction of vascular smooth muscle through PLC pathways and negatively modulates the vascular relaxation mediated by other adenosine receptor subtypes. 相似文献
20.
Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands. 相似文献