首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
p53 was originally considered to be a nuclear oncogene, but several convergent lines of research have indicated that the wild-type gene functions as a tumor suppressor gene negatively regulating the cell cycle. Mutations in the p53 gene have been detected in many tumor types and seem to be the most common genetic alterations in human cancer. In this preliminary study, sera of 92 patients (pts) with breast disease were analyzed for the presence of the mutant p53 protein (mp53) with a selective immunoenzyme assay employing a monoclonal antibody (PAb 240) specific for the majority of mammalian m p53 but not for the wild-type protein. Of the 10 patients with benign breast disease, only two (20%) showed detectable m p53 levels in the serum. In the breast cancer group, sera from 7 of the 30 pts (23%) without lymph node involvement were positive for m p53, as were 7 out of the 45 pts (15%) with metastatic lymph nodes and 1 out of the 7 pts (14%) with disseminated disease. The specifity of m p53 assay evaluated in 20 healthy controls was 100%. These preliminary results showed that serum positivity for m p53 is not related to breast disease extension. Further studies to assess the utility of m p53 as a possible prognosis factor in breast cancer are currently in progress.  相似文献   

2.
The p53 tumor suppressor gene is a logical target for cancer therapy. Several therapeutic strategies can be envisioned based upon recent advances concerning structure and function of the p53 protein, its interaction with cellular and viral proteins and its roles in repairing DNA, regulating cell division and promoting apoptosis.  相似文献   

3.
4.
p53: the ultimate tumor suppressor gene?   总被引:24,自引:0,他引:24  
M Oren 《FASEB journal》1992,6(13):3169-3176
Alterations in the gene encoding the cellular p53 protein are perhaps the most frequent type of genetic lesions in human cancer. At the heart of these alterations is the abrogation of the tumor suppressor activity of the normal p53. In many cases this is achieved through point mutations in p53, which often result in pronounced conformational changes. Such mutant polypeptides, which tend to accumulate to high levels in cancer cells, are believed to exert a dominant negative effect over coexpressed normal p53. Extensive research on p53, especially in the course of the last 3 years, has already provided much insight into the biological and biochemical mechanisms that underlie its capacity to act as a potent tumor suppressor. There are now many indications that p53 may play a central role in the control of cell proliferation, cell survival, and differentiation. Nevertheless, despite the purported importance of p53 for such crucial processes, mice can develop apparently without any defect in the total absence of p53. This raises the possibility that p53 may become critically limiting only when normal growth control is lost.  相似文献   

5.
The tumor suppressor p53 regulates its own transcription.   总被引:1,自引:0,他引:1  
  相似文献   

6.
Structure of the rat p53 tumor suppressor gene.   总被引:12,自引:1,他引:12       下载免费PDF全文
Aberration within the p53 tumor suppressor gene is the most frequently identified genetic damage in human cancer. Regulatory functions proposed for the p53 protein include modulation of the cell cycle, cellular differentiation, signal transduction, and gene expression. Additionally, the p53 gene product may guard the genome against incorporation of damaged DNA. To facilitate study of its role in carcinogenesis using a common animal model, we determined the structure of the rat p53 gene. We identified 18 splice sites and defined 25 bases of the intervening sequences adjacent to these sites. We also discovered an allelic polymorphism that occurs within intron 5 of the gene. The rat gene approximates the mouse ortholog. It is 12 kb in length with the non-coding exon 1 separated from exon 2 by 6.2 kb of intervening sequence. The location and size of all rat gene introns approximate those of the mouse. Whereas the mouse and human genes each contain 11 exons, the rat p53 gene is composed of only 10. No intervening sequence occurs between the region of the rat gene corresponding to exons 6 and 7 of the mouse and human p53 genes. This implies intron 6 may be functionally insignificant for species in which it is retained. To extrapolate to p53 involvement in human tumorigenesis, we suggest that mutational events within intron 6 may not be of pathological significance unless splicing is hindered.  相似文献   

7.
Tumor suppressor genes are implicated in cell cycle progression. Inactivation of these genes predominantly occurs through mutations and/or allelic loss that involves both alleles. With inactivation by multiple mutations in a single gene, cloning of the amplified gene is necessary to determine whether the mutations reside on one or both alleles. Using pyrosequencing, a recently developed approach based on sequencing-by-synthesis, we studied genetic variability in the p53 tumor suppressor gene and could quantify the ratio between the mutated and wild-type amplified fragments. Furthermore, this sequencing technique also allows allelic determination of adjacent mutations with no cloning of amplified fragments.  相似文献   

8.
2-Amino-4,6-dinitrotoluene (2-Am-DNT) and its isomers are the most common metabolites of 2,4,6-trinitrotoluene (TNT). It is desirable to know the toxicity of this metabolite particularly because of its role in carcinogenicity and because it could contaminate drinking water. We used MCF-7 human breast cancer cells which have p53 tumor suppressor gene in wild type form in both the loci. Immunoblotting with p53 antibody showed enhanced p53 level in treated cells compared to untreated control cells. Similarly, p53 DNA-protein binding assays (gel-shift) showed accumulation of p53 protein in treated cells. This is the first report which shows p53 accumulation in 2-Am-DNT treated cells providing evidence of potential carcinogenic effects of 2-Am-DNT.  相似文献   

9.
10.
细胞自噬(autophagy)是一种在进化上高度保守的代谢通路,它发生的分子机制和信号调控途径相当复杂,其中mTOR信号通路和Beclin1复合物发挥了最重要的调控作用,p53也是细胞自噬重要的调节因子。研究发现,p53可通过多种途径调节细胞自噬水平,这主要决定于它的亚细胞定位。在细胞核中,p53可通过多种方式上调细胞自噬;而在细胞质中,p53对细胞自噬具有负性调节作用,可抑制细胞自噬的发生。探究清楚p53与细胞自噬之间的调控关系将有助于人类正确认识由于细胞自噬功能异常所诱导的肿瘤的发生发展过程,从而最终攻克各种肿瘤性疾病。  相似文献   

11.
12.
13.
14.
Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy.  相似文献   

15.
16.
Mutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein. In this study, we explored the possibility of using aminoglycoside antibiotics to induce the production of a full-length functional p53 protein from a gene carrying a PTC. We identified a human cancer cell line containing a PTC, for which high levels of readthrough were obtained in the presence of aminoglycosides. Using these cells, we demonstrated that aminoglycoside treatment stabilized the mutant mRNA, which would otherwise have been degraded by non-sense-mediated decay, resulting in the production of a functional full-length p53 protein. Finally, we showed that aminoglycoside treatment decreased the viability of cancer cells specifically in the presence of nonsense-mutated p53 gene. These results open possibilities of developing promising treatments of cancers linked with non-sense mutations in tumor suppressor genes. They show that molecules designed to induce stop-codon readthrough can be used to inhibit tumor growth and offer a rational basis for developing new personalized strategies that could diversify the existing arsenal of cancer therapies.  相似文献   

17.
Regulation of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
  相似文献   

18.
Activation of the p53 tumor suppressor protein   总被引:19,自引:0,他引:19  
The p53 tumor suppressor gene plays an important role in preventing cancer development, by arresting or killing potential tumor cells. Mutations within the p53 gene, leading to the loss of p53 activity, are found in about half of all human cancers, while many of the tumors that retain wild type p53 carry mutations in the pathways that allow full activation of p53. In either case, the result is a defect in the ability to induce a p53 response in cells undergoing oncogenic stress. Significant advances have been made recently in our understanding of the molecular pathways through which p53 activity is regulated, bringing with them fresh possibilities for the design of cancer therapies based on reactivation of the p53 response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号