首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-well chip (MWC) is described by which mouse embryonic carcinoma (EC) stem cells form a comparatively more rapid and uniform embryoid body (EB) over the conventional hanging drop (HD) method. The newly developed MWC consists of an array of extruded through-holes, each of which holds a droplet of the cell suspension. The study found that the small curvature radius of the droplet in the MWC improved the EB formation rate of a hanging drop from 70% to 98%. Furthermore, the EBs formed by the MWC were uniformly round in shape regardless of the number of suspended cells ranging from 0.5×103 to 20×103. The ratio of beating colonies from the MWC was over 2-fold larger than that from HD. The experiments demonstrate that the MWC will be a valuable experimental tool for robust and reproducible EB-based differentiation of a defined number of ES cells.  相似文献   

2.
Pluripotent human embryonic stem cell (hESC) lines are a promising model system in developmental and tissue regeneration research. Differentiation of hESCs towards the three germ layers and finally tissue specific cell types is often performed through the formation of embryoid bodies (EBs) in suspension or hanging droplet culture systems. However, these systems are inefficient regarding embryoid body (EB) formation, structural support to the EB and long term differentiation capacity. The present study investigates if agarose, as a semi solid matrix, can facilitate EB formation and support differentiation of hESC lines. The results showed that agarose culture is able to enhance EB formation efficiency with 10% and increase EB growth by 300%. The agarose culture system was able to maintain expression of the three germ layers over 8 weeks of culture. All of the four hESC lines tested developed EBs in the agarose system although with a histological heterogeneity between cell lines as well as within cell lines. In conclusion, a 3-D agarose culture of spherical hESC colonies improves EB formation and growth in a cost effective, stable and non-laborious technique.  相似文献   

3.
To investigate formation of the three primary germ layers in mouse embryoid bodies (EBs), we observed changes in structure and gene expression over a 7-day culture period. We compared these changes using two methods for EB formation: hanging drop (HD) and static suspension culture (SSC). Light microscopy showed that a stratified columnar epithelial layer developed on the surface of EBs formed using the HD method. From Day 3 in culture, ultrastructural changes occurred in the aligned cellular membranes. Condensation of actin filaments was followed by formation of complicated adherent junctions and dilatation of intercellular canaliculi containing well-developed microvilli. These changes were more marked in EBs formed by the HD method than the SSC method. On Day 5 of culture, Brachyury gene expression, a marker for mesoderm formation, was detected only with the HD method. Nestin, an ectoderm marker, and Foxa2, an endoderm marker, were expressed with both methods. These results suggest that in EBs formed with the HD method, actin formation and Brachyury gene expression mark the transition from two to three primary germ layers. Additionally, the HD method promotes more rapid and complete development of mouse EBs than does the SSC method. While the SSC method is simple and easy to use, it needs improvement to form more complete EBs.  相似文献   

4.
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation, and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%, but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single, larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture, or aggregates of ES cells in hanging drop culture, they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus, initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however, hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension, whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient, scalable bioprocesses for ES cell differentiation, and inform novel methods for the production of hematopoietic tissues.  相似文献   

5.
Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.  相似文献   

6.
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells. Download video file.(78M, mp4)  相似文献   

7.
Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.  相似文献   

8.
Research on intracellular bacteria of the family Chlamydiaceae, and the diseases they cause, requires large amounts of infectious elementary bodies (EB). We describe an approach that maximizes the generation of Chlamydia pneumoniae, Chlamydia trachomatis, Chlamydia abortus, or Chlamydia pecorum EBs in several replication cycles over approximately 10 days or more in a saturated equilibrium monolayer cell culture system. Buffalo Green Monkey Kidney (BGMK) cells, Human Epidermoid Carcinoma-2 (HEp-2) cells, or mouse McCoy cells were tested. BGMK cells best supported C. pneumoniae replication when cultivated in Iscove's Modified Dulbecco's Medium. From day 1 to day 9 after inoculation, C. pneumoniae genomes per ml culture medium increased from 10(5.1) to 10(8.6) in BGMK, from 10(5.6) to 10(8.1) in HEp-2, and remained at 10(5.2) in McCoy cell cultures. Three-month pre-inoculation maintenance of BGMK cells in different culture media did not influence C. pneumoniae yields. Inoculation at multiplicities of infection (MOI) of 10 or higher and supplementation of the cell culture medium on day 7 after inoculation with 0.1% glucose enhanced C. pneumoniae EB yields in harvested cell culture medium. For purification, EBs in medium were concentrated by sedimentation, followed by low-speed centrifugation for removal of host cell nuclei, and by step-gradient centrifugation of the supernatant in a 30% RenoCal-76-50% sucrose step-gradient. Extensive sonication increased yield and infectivity of chlamydial EB. The combined method typically produced from 1000 ml infected BGMK culture medium 10 ml homogeneous, single-cell, highly infectious EB stock containing approximately 5x10(11) C. pneumoniae genomes equivalent to 4-5x10(11) inclusion forming units.  相似文献   

9.
Propelling a manual wheelchair (MWC) is a strenuous task that causes upper limb musculoskeletal disorders (MSD) in a large proportion of MWC users. Although most studies on MWC propulsion biomechanics assume that MWC propulsion is a relatively symmetric task, recent literature suggests that this is the case only when the assessed outcome measures are averaged over long periods of time, and not over short periods (i.e., instantaneously). No method is currently available to assess instantaneous symmetry. In this work, we present the Instantaneous Symmetry Index (ISI), a new method that quantifies how a variable has been instantaneously asymmetric during a selected time period. Thirteen experienced MWC users propelled on different cross slopes of 0%, 2%, 4%, 6% and 8%. As the cross slope is increased, the upper hand produced less propulsive moments and the lower hand produced more propulsive movements. This has been reflected in the ISI, which increased from 0.20 (0% slope) to 0.84 (8% slope) with a Spearman׳s coefficient of 0.90. The ISI has great potential to evaluate the ability of a user to propel symmetrically and synchronously, and will be a relevant measure to include in future studies on the impact of MWC propulsion asymmetry on MSD risk.  相似文献   

10.
Wehkamp J  Chu H  Shen B  Feathers RW  Kays RJ  Lee SK  Bevins CL 《FEBS letters》2006,580(22):5344-5350
Antimicrobial peptides and proteins are key effectors of innate immunity, expressed both by circulating phagocytic cells and by epithelial cells of mucosal tissues. In the human small intestine, Paneth cells are secretory epithelial cells that express the antimicrobials human alpha-defensin-5 (HD5), HD6, lysozyme and secretory phospholipase A(2) (sPLA(2)), and recent studies have implicated reduced HD5 and HD6 expression levels in the pathogenesis of ileal Crohn's disease. However, expression levels of these molecules have not been determined routinely by techniques that readily permit quantitative comparisons of their distribution between tissues and samples. Using quantitative real-time PCR with external standards and Northern blot analysis, we compared expression levels of mRNA encoding these four Paneth cell antimicrobial peptides, as well as circulating human neutrophil defensins in several different gastrointestinal tissues and the bone marrow. HD5 and HD6 were the most abundant antimicrobials expressed in the small intestine. The concentration of HD5 mRNA is approximately 5 x 10(5) copies per 10ng RNA in the jejunum and ileum; HD6 mRNA levels were about six times lower than those of HD5. With the exception of low levels in the pancreas (10(3) copies/10 ng RNA), the expression of HD5 and HD6 in tissues other than small intestine was at or below detectable limits. The expression of sPLA2 and lysozyme mRNA was observed in the small intestine (approximately, 3 x 10(3) and 9 x 10(3) copies/10 ng RNA, respectively), but also in several other tissues. Lysozyme expression was high in the duodenum (10(5) copies/10 ng RNA), and the protein localized to both Brunner's glands in the lamina propria and Paneth cells. By comparison, the hematopoietic alpha-defensins HNP1-3 mRNA were detected at 6 x 10(5) copies per 10 ng RNA in the bone marrow. These quantitative RT-PCR data from healthy tissues represents the first quantitative topographical assessment of antimicrobial expression in the gastrointestinal tract and provides a means to directly compare expression levels between healthy tissues and disease specimens for multiple antimicrobial peptides.  相似文献   

11.
Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.  相似文献   

12.
Wang XL  Wang CY  Yu XJ  Zhao YS  Li J  Duan CM  Guo XM 《生理学报》2005,57(4):486-492
以小鼠胚胎干细胞(ES-D3)为模型,应用新型细胞培养系统——STLV型旋转生物反应器(rotarycellculturesystem,RCCS)建立一种批量制备拟胚体(embryoidbodies,EBs)的新方法,研究不同细胞接种密度及培养时间对RCCS内EBs产生效率的影响。为了进一步研究该制备方法是否对EBs的分化潜能产生影响,对照传统方法制备的EBs,利用形态学及RT-PCR方法测定经旋转生物反应器制备的EBs在自发性或诱导条件下(1%DMSO)向心肌细胞的分化能力。结果表明:ES-D3在RCCS内能够高效形成EBs,与传统的直接悬浮法比较,其EBs的形成效率可达到后者的2倍。1×104个/ml为最佳细胞接种密度,培养时间也是在RCCS制备EBs过程中的重要因素之一,培养第4~5天为最佳收获EBs的时间。与悬滴法制备的EBs比较,该方法制备的EBs分化为心肌细胞的潜能未改变。由此,应用旋转生物反应器可以高效制备EBs,该方法制备的EBs可以用于发育生物学等基础及应用领域的相关研究。  相似文献   

13.
Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls. Fluorescence Activated Cell Sorting (FACS) assays showed that this increase in volume is not due to increased cellular proliferation. Instead, the increase in volume appears to be due to reduced cellular aggregation and adherence. This is further shown by our observation that 40% of treated EBs form twin instead of single EBs, and that they have a significantly reduced ability to adhere to culture dishes when plated. A time course over the first 96 h reveals that the impaired adherence is transient and explained by an initial 12-hour delay in EB development. Quantitative PCR expression analysis suggests that the adhesion molecule integrin-β1 (ITGB1) is transiently downregulated by the p85α suppression. In conclusion we found that suppressing p85α leads to a delay in forming compact EBs, accompanied by a transient inability of the EBs to undergo normal cell-cell and cell-substrate adhesion.  相似文献   

14.
The asynchronous development of Eimeria tenella in orally infected chickens makes it possible to purify second generation merozoites (meros) and shizonts from a single mucosal homogenate. After centrifugation in 30% Percoll in phosphate-buffered saline (Percoll-PBS), debris, villi, and schizonts float, whereas meros and erythrocytes are pelleted. Erythrocytes are lysed by a mild hypotonic shock; meros are filtered through a cotton wool plug and collected by centrifugation. The 30% Percoll-PBS supernatant fraction is diluted to 25% Percoll-PBS and centrifuged to sediment mature schizonts. By repeated slow-speed centrifugation, schizonts are separated from nuclei and small-sized debris. In less than 3 hr, 8.8 +/- 2.3 x 10(8) meros and 7.2 +/- 3.9 x 10(6) schizonts are collected from 10 infected chickens. Contamination with host material is 2% for meros but variable for schizonts. For the assessment of cell viability, ethidium bromide (EB) and acridine orange (AO) have been used as markers for dead and living cells, respectively, in a single step method. More than 95% of the schizonts and meros accumulate AO and no EB, whereas lysed erythrocytes and all cells hosting a schizont are permeable to EB. After incubation of meros and schizonts in synthetic media with [5,6- 3H]uracil, label accumulates in the perchloric acid-soluble and -insoluble fractions, indicating transport, salvage, and incorporation of the pyrimidine precursor in nucleic acids. If stored on ice, meros and schizonts retain metabolic activity for at least 5 hr, but metabolism declines rapidly during incubation at 41 C.  相似文献   

15.
EB1089, a 1,25-dihydroxyvitamin D(3) analog, has been known to have potent antiproliferative properties in a variety of malignant cells in vitro and in vivo. In the present study, we analyzed the effect of EB1089 on human myeloma cell lines. EB1089 inhibited the proliferation of NCI-H929 cells and RPMI8226 cells in a dose-dependent manner among three myeloma cell lines tested. The antiproliferative effect of EB1089 on myeloma cells was related to the expression level of vitamin D receptor. To investigate the mechanism of the antiproliferative effect of EB1089, cell cycle analysis was attempted in EB1089-sensitive NCI-H929 cells. EB1089 (1 x 10(-8) M) efficiently induced G(1) arrest of the cell cycle. Analysis of G(1) regulatory proteins demonstrated that protein levels of CDK2, CDK4, cyclin D1, and cyclin A were decreased in a time-dependent manner, but not those of CDK6 and cyclin E, by EB1089. In addition, EB1089 (1 x 10(-8) M, 72 h) increased the protein level of the CDKI p27 and markedly enhanced the binding of p27 with CDK2 compared to EB1089-untreated cells. Furthermore, the activity of CDK2-associated cyclin kinase was decreased, which was accompanied by the reduction of cyclin-D1-, cyclin-E-, and cyclin-A-associated kinase activities, resulting in the hypophosphorylation of Rb protein. These results suggest that EB1089 can inhibit the proliferation of human myeloma cells, especially NCI-H929 cells, via a G(1) block in association with the induction of p27 and the reduction of CDK2 activity.  相似文献   

16.

Background

Embryonic stem (ES) cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted.

Results

Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB) formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells.

Conclusions

The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.  相似文献   

17.
Given a binding polynomial in Adair form, A(x) = 1 + beta 1 x + ... + beta n x n, beta i greater than or equal to 0, a basic problem is to determine a method of fitting a model polynomial to A(x) and a quantitative measure of the goodness of fit. This paper presents such a method for fitting Monod-Wyman-Changeux (MWC) model polynomials when A(x) is of degree three or four. The method of fitting is based on the property that the zeros of an MWC polynomial of any degree lie on a circle in the complex plane. The parameters in the MWC model are determined so that if possible this circle coincides with the circle on which lie the zeros of A(x). The measure of goodness of fit is provided by a probabilistic model which gives the probability that a binding polynomial has its zeros on a circle on which lie the zeros of an MWC polynomial and if so, the probability that the juxtaposition of the two sets of zeros can occur by chance alone.  相似文献   

18.
Miniaturization and parallelization of cell culture procedures are in focus of research in order to develop test platforms with low material consumption and increased standardization for toxicity and drug screenings. The cultivation in hanging drops (HDs) is a convenient and versatile tool for biological applications and represents an interesting model system for the screening applications due to its uniform shape, the advantageous gas supply, and the small volume. However, its application has so far been limited to non#x02010;adherent and aggregate forming cells. Here, we describe for the first time the proof‐of‐principle regarding the adherent cultivation of human embryonic stem cells in HD. For this microcarriers were added to the droplet as dynamic cultivation surfaces resulting in a maintained pluripotency and proliferation capacity for 10 days. This enables the HD technique to be extended to the cultivation of adherence‐dependent stem cells. Also, the possible automation of this method by implementation of liquid handling systems opens new possibilities for miniaturized screenings, the improvement of cultivation and differentiation conditions, and toxicity and drug development.  相似文献   

19.
A temperature-responsive hydrogel composed of aqueous methylcellulose (MC) blended with distinct concentrations of PBS was prepared and characterized. The developed MC hydrogel underwent a sol-gel reversible transition upon heating or cooling at approximately 32 degrees C. This temperature-responsive hydrogel was employed to coat the surface of a polystyrene dish and used to cultivate human embryonic stem (hES) cell clumps for the formation of embryoid bodies (EBs) in liquid suspension culture (LSC-MC/PS). The conventional hanging drop culture (HDC) and LSC in the uncoated polystyrene dish (LSC-PS) or in the Corning Ultralow-Attachment plate (LSC-ULAP) were used as controls. The results indicated that LSC-PS failed to generate EBs in an efficient manner, whereas the efficiencies of EB formation observed in LSC-ULAP and LSC-MC/PS were significantly greater than in HDC. The hES cells within the EBs were shown to express molecular markers specific for representative cells from the three embryonic germ layers. These results indicated that the MC-coated dish can be used to produce a large scale of hES cell derivatives through the formation of EBs.  相似文献   

20.
Ethidium bromide (EB) was more efficient than ethyl violet or rifampin as a curing agent for the penicillinase plasmids of Staphylococcus aureus strains. The effects of EB on growth and on the loss of the penicillinase plasmid of PS 81 were studied in detail. The growth rates of PS 81 and an EB-cured derivative were identical in broth, but the cured derivative had a shorter lag in the presence of added 6 x 10(-6)m EB. The shortened lag was due to prior exposure to EB as the cured derivative and an EB-treated but uncured strain of PS 81 gave identical growth lag and growth rates in the presence of EB. The curing of PS 81 by EB occurs in three phases. After a 4 to 5 hr lag, there is a 100-fold increase in the number of penicillinase-negative cells, and the proportion of cured cells continues to rise until 10 to 12 hr. Thereafter, the population becomes refractory to further curing, and the proportion of penicillinase-negative cells remains constant at about 20% of the total. Penicillinase-positive survivors of EB treatment showed increased EB resistance and were cured at lower rates upon subsequent EB treatment. Isolated colonies of the parental strain PS 81 were heterogeneous in their EB sensitivity. Thus, EB does not competitively favor spontaneously cured penicillinase-negative cells but appears to act in a manner analogous to acridine orange on the plasmids of enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号