首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoic acid is an essential cofactor for enzymes that participate in key metabolic pathways in most organisms. While in mammalian cells lipoylated proteins reside exclusively in the mitochondria, apicomplexan parasites of the genus Plasmodium harbour two independent lipoylation pathways in the mitochondrion and the apicoplast, a second organelle of endosymbiotic origin. Protein lipoylation in the apicoplast relies on de novo lipoic acid synthesis while lipoylation of proteins in the mitochondrion depends on scavenging of lipoic acid from the host cell. Here, we analyse the impact of lipoic acid scavenging on the development of Plasmodium berghei liver stage parasites. Treatment of P. berghei-infected HepG2 cells with the lipoic acid analogue 8-bromo-octanoic acid (8-BOA) abolished lipoylation of mitochondrial enzyme complexes in the parasite while lipoylation of apicoplast proteins was not affected. Parasite growth as well as the ability of the parasites to successfully complete liver stage development by merosome formation were severely impaired but not completely blocked by 8-BOA. Liver stage parasites were most sensitive to 8-BOA treatment during schizogony, the phase of development when the parasite grows and undergoes extensive nuclear division to form a multinucleated syncytium. Live cell imaging as well as immunofluorescence analysis and electronmicroscopy studies revealed a close association of both host cell and parasite mitochondria with the parasitophorous vacuole membrane suggesting that host cell mitochondria might be involved in lipoic acid uptake by the parasite from the host cell.  相似文献   

2.
Lipoic acid is an essential cofactor of multienzyme complexes that are integral to energy metabolism, amino acid degradation and folate metabolism. In recent years it has been shown that the malaria parasite Plasmodium falciparum possesses organelle-specific pathways that guarantee the lipoylation of their multienzyme complexes which occur in the mitochondrion (LA salvage) and in a plastid-like organelle, the apicoplast (LA biosynthesis). The unique distribution of the lipoylation machineries and the unique metabolic requirements of the parasites present a situation that is potentially exploitable for new ways to improve malaria control.  相似文献   

3.
Live cell imaging of human malaria parasites Plasmodium falciparum during gametocytogenesis revealed that the apicoplast does not grow, whereas the mitochondrion undergoes remarkable morphological development. A close connection of the two organelles is consistently maintained. The apicoplast and mitochondrion are not components of the male gametes, suggesting maternal inheritance.  相似文献   

4.
The invasion of host cells by the malaria parasite Plasmodium falciparum requires specific protein-protein interactions between parasite and host receptors and an intracellular translocation machinery to power the process. The transmembrane erythrocyte binding protein-175 (EBA-175) and thrombospondin-related anonymous protein (TRAP) play central roles in this process. EBA-175 binds to glycophorin A on human erythrocytes during the invasion process, linking the parasite to the surface of the host cell. In this report, we show that the cytoplasmic domain of EBA-175 encodes crucial information for its role in merozoite invasion, and that trafficking of this protein is independent of this domain. Further, we show that the cytoplasmic domain of TRAP, a protein that is not expressed in merozoites but is essential for invasion of liver cells by the sporozoite stage, can substitute for the cytoplasmic domain of EBA-175. These results show that the parasite uses the same components of its cellular machinery for invasion regardless of the host cell type and invasive form.  相似文献   

5.
6.
Live cell imaging is a powerful method to study protein dynamics at the cell surface, but conventional imaging probes are bulky, or interfere with protein function, or dissociate from proteins after internalization. Here, we report technology for covalent, specific tagging of cellular proteins with chemical probes. Through rational design, we redirected a microbial lipoic acid ligase (LplA) to specifically attach an alkyl azide onto an engineered LplA acceptor peptide (LAP). The alkyl azide was then selectively derivatized with cyclo-octyne conjugates to various probes. We labeled LAP fusion proteins expressed in living mammalian cells with Cy3, Alexa Fluor 568 and biotin. We also combined LplA labeling with our previous biotin ligase labeling, to simultaneously image the dynamics of two different receptors, coexpressed in the same cell. Our methodology should provide general access to biochemical and imaging studies of cell surface proteins, using small fluorophores introduced via a short peptide tag.  相似文献   

7.
alpha-Lipoic acid (LA) is a cofactor for mitochondrial alpha-ketoacid dehydrogenase complexes and is one of the most potent, natural antioxidants. Reduction of oxidative stress by LA supplementation has been demonstrated in patients with diabetic neuropathy and in animal models. To determine how normal development or pathological conditions are affected by genetic alterations in the ability of mammalian cells to synthesize LA and whether dietary LA can circumvent its endogenous absence, we have generated mice deficient in lipoic acid synthase (Lias). Mice heterozygous for disruption of the Lias gene develop normally, and their plasma levels of thiobarbituric acid-reactive substances do not differ from those of wild-type mice. However, the heterozygotes have significantly reduced erythrocyte glutathione levels, indicating that their endogenous antioxidant capacity is lower than those of wild-type mice. Homozygous embryos lacking Lias appear healthy at the blastocyst stage, but their development is retarded globally by 7.5 days postcoitum (dpc), and all the null embryos die before 9.5 dpc. Supplementing the diet of heterozygous mothers with LA (1.65 g/kg of body weight) during pregnancy fails to prevent the prenatal deaths of homozygous embryos. Thus, endogenous LA synthesis is essential for developmental survival and cannot be replaced by LA in maternal tissues and blood.  相似文献   

8.
In triacylglycerol (TAG)-accumulating organisms, the physiological roles of diacylglycerol acyltransferase (DGAT), a principal enzyme in the major biosynthetic pathway for TAG, appear to be diverse. Apicomplexan parasite, Plasmodium falciparum, shows unique features in TAG metabolism and trafficking during intraerythrocytic development, and unlike most eukaryotes, only one open reading frame (ORF) encoding a candidate DGAT could be found in its genome. However, whether this candidate ORF encodes P. falciparum DGAT and its physiological relevance have not been assessed. Here, we demonstrate that the ORF is transcribed as a approximately 3.6 kb single mRNA throughout intraerythrocytic development, markedly elevated at trophozoite, schizont, and segmented schizont, and indeed encodes a protein exhibiting DGAT activity. Further, we provide evidence that the parasite in which the ORF was disrupted via double crossover recombination cannot be enriched, implying a fundamental role of PfDGAT in intraerythrocytic proliferation.  相似文献   

9.
Malaria transmission is dependent on the development of sexual forms of Plasmodium falciparum, called gametocytes, in the vertebrate host. Pfg27 is an abundantly expressed sexual stage-specific protein that is essential for gametocytogenesis in P. falciparum. We describe the crystal structure of Pfg27, which reveals a novel fold composed of two pseudo dyad-related repeats of the helix-turn-helix motif. Structurally equivalent helices of each repeat either form a dimer interface or interact with RNA in vitro. One side of the dimer presents an unprecedented juxtaposition of four polyproline (PXXP) motifs. Preliminary binding data indicate that these sites are capable of binding Src homology-3 (SH3) modules. Molecular modeling suggests that the dimer can accommodate two SH3 modules simultaneously, potentially enabling molecular crosstalk between SH3-containing proteins. The structural and initial biochemical evidence suggests that Pfg27 may serve as a platform for RNA and SH3 binding.  相似文献   

10.
The human malaria parasite Plasmodium falciparum poses an increasing threat to human health in the tropical regions of the world, and the validation and assessment of possible drug targets is required for the development of new antimalarials. It has been shown that the erythrocytic stages of the parasites, which are responsible for the pathology of the disease in humans, are under enhanced oxidative stress and are particularly vulnerable to exogenous challenges by reactive oxygen species. Therefore it is postulated that the disruption of the antioxidant and/or redox systems of the parasite is a feasible way to interfere with their development during erythrocytic schizogony. In order to test this suggestion thioredoxin reductase (TrxR), an enzyme heavily involved in maintenance of redox homeostasis and antioxidant defense, was knocked out in P. falciparum. It was impossible to generate parasites with a disrupted trxR gene suggesting that TrxR is essential for P. falciparum erythrocytic stages. Technical problems were excluded by transfecting a 3' replacement construct, which recombined correctly and transfectants did not show any phenotypic alterations. In order to prove that the trxR knockout was responsible for the lethal phenotype of the null mutants, a co-transfection with both the knockout construct and a construct containing the trxR coding region under the control of the calmodulin promoter was conducted. Despite the disruption of the trxR gene, parasites were viable. In a Southern blot analysis a complicated restriction pattern was obtained, but it was shown by pulse field gel electrophoresis and field inverse gel electrophoreses that only the trxR gene locus on chromosome 9 was targeted by the constructs. It was found that the co-transfected constructs form concatemeric structures prior to integration into the trxR gene locus, which is further supported by plasmid rescue followed by restriction analyses of the plasmids. Northern and Western blot analyses proved that the co-transfectants highly overexpress TrxR from the introduced gene. Our results demonstrate that TrxR is essential for the survival of the erythrocytic stages of P. falciparum.  相似文献   

11.
Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses revealed a second copy of proteins homologous to components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) system in organisms with secondary plastids, including the malaria parasite P. falciparum. These proteins are predicted to be endowed with an apicoplast targeting signal and are suggested to play a role in the transport of nuclear-encoded proteins to the apicoplast. Here, we have studied components of this ERAD-derived putative preprotein translocon complex in malaria parasites. Using transfection technology coupled with fluorescence imaging techniques we can demonstrate that the N terminus of several ERAD-derived components targets green fluorescent protein to the apicoplast. Furthermore, we confirm that full-length PfsDer1-1 and PfsUba1 (homologues of yeast ERAD components) localize to the apicoplast, where PfsDer1-1 tightly associates with membranes. Conversely, PfhDer1-1 (a host-specific copy of the Der1-1 protein) localizes to the ER. Our data suggest that ERAD components have been “rewired” to provide a conduit for protein transport to the apicoplast. Our results are discussed in relation to the nature of the apicoplast protein transport machinery.The apicomplexan parasite Plasmodium falciparum is the etiological agent of malaria tropica, the most severe form of human malaria, responsible for over 250 million infections and 1 million deaths annually (61). Many apicomplexan parasites, including P. falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event (27, 58). Although during the course of evolution this plastid organelle has lost the ability to carry out photosynthesis, it is still the site of several important biochemical pathways, including isoprenoid and heme biosynthesis, and as such is essential for parasite survival (60). As in other plastids, the vast majority of genes originally encoded on the plastid genome have been transferred to the nucleus of the host. As a result, their gene products (predicted to constitute up to 10% of all nucleus-encoded proteins) must be imported back into the apicoplast (12). The apicoplast is surrounded by four membranes (55), and this protein import process thus represents a major cell biological challenge and has attracted much research interest, not least due to the importance of P. falciparum as a human pathogen (16, 50).The signals directing transport of nucleus-encoded proteins to complex plastids, including the apicomplexan apicoplast, have been studied in great detail in recent years, and reveal that such proteins are endowed with specific N-terminal targeting sequences, referred to as a bipartite topogenic signals (BTS), that direct their transport to this compartment (50). BTS are composed of an N-terminal endoplasmic reticulum (ER)-type signal sequence, which initially allows proteins to enter the secretory system via the Sec61 complex (59). Following this, proteins are carried via a Golgi complex-independent transport step to the second outermost membrane, from where they are then translocated across the remaining three apicoplast membranes, directed by the second part of the BTS, the transit peptide (51). Based on evolutionary considerations, it has long been suggested that transport across the inner two apicoplast membranes occurs via a Toc/Tic-like (where Toc and Tic are translocons of the outer and inner chloroplast envelopes, respectively) protein translocase machinery, and this is supported by a recent publication that provides evidence for an essential role of a Toxoplasma gondii Tic20 homologue in this transport process (50, 57). Despite this progress, it is still unclear how proteins travel across the second and third outer apicoplast membranes. Several models have been discussed to account for this transport step, including vesicular shuttle and translocon-based mechanisms (recently reviewed in reference 19), but until recently no actual molecular equipment had been found which could account for these membrane translocation events. To address this question, Sommer et al. screened the nucleomorph genome of the chromalveolate cryptophyte Guillardia theta (which, similar to P. falciparum, contains a four-membrane-bound plastid organelle) for genes encoding potential translocon-related proteins (49). Surprisingly, the authors identified genes encoding proteins usually involved in the ER-associated protein degradation pathway (ERAD), which recognizes incorrectly folded protein substrates and retrotranslocates them to the cell cytosol for degradation by the ubiquitin (Ub)-proteasome system (35, 44). As such, the ERAD system functions as a translocation complex, capable of transporting proteins across a biological membrane. Further characterization of one of these proteins (G. theta Der1-1, a homologue of yeast Der1p, a component of the ERAD system) provided strong evidence for a plastid localization. These data suggested an attractive solution to the mechanistic problem of transport across the second and third outermost membrane of complex plastids by hypothesizing a role for an ERAD-derived protein translocon complex. Intriguingly, this study also identified several members of this ERAD-derived translocon complex (apicoplast ERAD [apERAD]) in the nuclear genome of P. falciparum endowed with an N-terminal BTS (49). The BTS derived from one of these proteins, P. falciparum sDer1-1 [PfsDer1-1], was sufficient to direct transport of green fluorescent protein (GFP) to the apicoplast of P. falciparum, suggesting that this ERAD-like machinery is ubiquitous among chromalveolates with four membrane-bound plastids (49). In this current report we extend our study of the P. falciparum apERAD complex.  相似文献   

12.
Growing evidence indicates that the protein regulators governing protein phosphatase 1 (PP1) activity have crucial functions because their deletion drastically affects cell growth and division. PP1 has been found to be essential in Plasmodium falciparum, but little is known about its regulators. In this study, we have identified a homolog of Inhibitor-3 of PP1, named PfI3. NMR analysis shows that PfI3 belongs to the disordered protein family. High affinity interaction of PfI3 and PfPP1 is demonstrated in vitro using several methods, with an apparent dissociation constant K(D) of 100 nm. We further show that the conserved (41)KVVRW(45) motif is crucial for this interaction as the replacement of the Trp(45) by an Ala(45) severely decreases the binding to PfPP1. Surprisingly, PfI3 was unable to rescue a yeast strain deficient in I3 (Ypi1). This lack of functional orthology was supported as functional assays in vitro have revealed that PfI3, unlike yeast I3 and human I3, increases PfPP1 activity. Reverse genetic approaches suggest an essential role of PfI3 in the growth and/or survival of blood stage parasites because attempts to obtain knock-out parasites were unsuccessful, although the locus of PfI3 is accessible. The main localization of a GFP-tagged PfI3 in the nucleus of all blood stage parasites is compatible with a regulatory role of PfI3 on the activity of nuclear PfPP1.  相似文献   

13.
Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8). PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.  相似文献   

14.
15.

Background

The expression of the clonally variant virulence factor PfEMP1 mediates the sequestration of Plasmodium falciparum infected erythrocytes in the host vasculature and contributes to chronic infection. Non-cytoadherent parasites with a chromosome 9 deletion lack clag9, a gene linked to cytoadhesion in previous studies. Here we present new clag9 data that challenge this view and show that surface the non-cytoadherence phenotype is linked to the expression of a non-functional PfEMP1.

Methodology/Principal Findings

Loss of adhesion in P. falciparum D10, a parasite line with a large chromosome 9 deletion, was investigated. Surface iodination analysis of non-cytoadherent D10 parasites and COS-7 surface expression of the CD36-binding PfEMP1 CIDR1α domain were performed and showed that these parasites express an unusual trypsin-resistant, non-functional PfEMP1 at the erythrocyte surface. However, the CIDR1α domain of this var gene expressed in COS-7 cells showed strong binding to CD36. Atomic Force Microscopy showed a slightly modified D10 knob morphology compared to adherent parasites. Trafficking of PfEMP1 and KAHRP remained functional in D10. We link the non-cytoadherence phenotype to a chromosome 9 breakage and healing event resulting in the loss of 25 subtelomeric genes including clag9. In contrast to previous studies, knockout of the clag9 gene from 3D7 did not interfere with parasite adhesion to CD36.

Conclusions/Significance

Our data show the surface expression of non-functional PfEMP1 in D10 strongly indicating that genes other than clag9 deleted from chromosome 9 are involved in this virulence process possibly via post-translational modifications.  相似文献   

16.
There is an urgent need for developing alternate strategies to combat Malaria caused by Plasmodium falciparum (P. falciparum) because of growing drug resistance and increased incidents of infection in humans. 3D models of P. falciparum annotated proteins using molecular modeling techniques will enhance our understanding about the mechanism of host parasite interactions for the identification of drug targets and malarial vaccine design. Potential structural templates for P. falciparum annotated proteins were selected from PDB (protein databank) using BLASTP (basic local alignment search tool for proteins). This exercise identified 476 Plasmodium proteins with one or more known structural templates (>or= 40 % identity) for further modeling. The pair-wise sequence alignments generated for protein modeling were manually checked for error. The models were then constructed using MODELLER (a comparative protein modelling program for modelling protein structures) followed by energy minimization in AMBER force field and checked for error using PROCHECK. AVAILABILITY: http://bioinfo.icgeb.res.in/codes/model.html.  相似文献   

17.
Upon invasion into erythrocytes, the malaria parasite Plasmodium falciparum must refurbish the host cell. The objective of this study was to elucidate the location and function of MAHRP2 in these processes. Using immunofluorescence and immunoelectron microscopy we showed that the membrane‐associated histidine‐rich protein‐2 (MAHRP2) is exported during this process to novel cylindrical structures in the erythrocyte cytoplasm. We hypothesize that these structures tether organelles known as Maurer's clefts to the erythrocyte skeleton. Live cell imaging of parasite transfectants expressing MAHRP2–GFP revealed both mobile and fixed populations of the tether‐like structures. Differential centrifugation allowed the enrichment of these novel structures. MAHRP2 possesses neither a signal peptide nor a PEXEL motif, and sequences required for export were determined using transfectants expressing truncated MAHRP2 fragments. The first 15 amino acids and the histidine‐rich N‐terminal region are necessary for correct trafficking of MAHRP2 together with a predicted hydrophobic region. Solubilization studies showed that MAHRP2 is membrane associated but not membrane spanning. Several attempts to delete the mahrp2 gene failed, indicating that the protein is essential for parasite survival.  相似文献   

18.
Plasmodium falciparum, similar to many other apicomplexan parasites, contains an apicoplast, a plastid organelle of secondary endosymbiotic origin. Nuclear‐encoded proteins are targeted to the apicoplast by a bipartite topogenic signal consisting of (i) an endoplasmic reticulum (ER)‐type N‐terminal secretory signal peptide, followed by (ii) a plant‐like transit peptide. Although the signals responsible for transport of most proteins to the apicoplast are well described, the route of trafficking from the ER to the outermost apicoplast membrane is still a matter of debate. Current models of trafficking to the apicoplast suggest that proteins destined for this organelle are, on entry into the lumen of the ER, diverted from the default secretory pathway to a specialized vesicular system which carries proteins directly from the ER to the outer apicoplast membrane. Here, we have re‐examined this trafficking pathway. By titrating wild‐type and mutant apicoplast transit peptides against different ER retrieval sequences and studying protein transport in a brefeldin A‐resistant parasite line, we generated data which suggest a direct involvement of the Golgi in traffic of soluble proteins to the P. falciparum apicoplast.  相似文献   

19.
The inner membrane complex and the apical secretory organelles are defining features of apicomplexan parasites. Despite their critical roles, the mechanisms behind the biogenesis of these structures in the malaria parasite Plasmodium falciparum are still poorly defined. We here show that decreasing expression of the P. falciparum homologue of the conserved endolysomal escorter Sortilin‐VPS10 prevents the formation of the inner membrane complex and abrogates the generation of new merozoites. Moreover, protein trafficking to the rhoptries, the micronemes, and the dense granules is disrupted, which leads to the accumulation of apical complex proteins in the endoplasmic reticulum and the parasitophorous vacuole. We further show that protein export to the erythrocyte and transport through the constitutive secretory pathway are functional. Taken together, our results suggest that the malaria parasite P. falciparum Sortilin has potentially broader functions than most of its other eukaryotic counterparts.  相似文献   

20.
Plasmodium falciparum traffics a large number of proteins to its host cell, the mature human erythrocyte. How exactly these proteins gain access to the red blood cell is poorly understood. Here we have investigated the effect of protein folding on the transport of model substrate proteins to the host cell. We find that proteins must pass into the erythrocyte cytoplasm in an unfolded state. Our data strongly support the presence of a protein-conducing channel in the parasitophorous vacoular membrane, and additionally imply an important role for molecular chaperones in keeping parasite proteins in a 'translocation competent' state prior to membrane passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号