首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300 microg/kg, i.p.) did not influence cumulative food intake for the 2h post-injection in rats or mice nor gastric emptying in rats. In rats, obestatin (300 microg/kg) did not modify CCK (1 microg/kg, i.p.)-induced significant decrease in food intake (36.6%) and gastric emptying (31.0%). Furthermore, while rats injected with CCK (0.3 microg/kg, i.v.) displayed gastric relaxation, no change in gastric intraluminal pressure was elicited by obestatin (300 microg/kg, i.v.) pre- or post-CCK administration. In in vitro rat gastric vagal afferent preparations, 20 units that had non-significant changes in basal activity after obestatin at 30 microg responded to CCK at 10 ng by a 182% increase. These data show that obestatin neither influences cumulative food intake, gastric motility or vagal afferent activity nor CCK-induced satiety signaling.  相似文献   

2.
Obestatin is a newly identified ghrelin-associated peptide (GAP) that is derived from post-translational processing of the prepro-ghrelin gene. Obestatin has been reported initially to be the endogenous ligand for the orphan receptor G protein-coupled receptor 39 (GPR39), and to reduce refeeding- and ghrelin-stimulated food intake and gastric transit in fasted mice, and body weight gain upon chronic peripheral injection. However, recent reports indicate that obestatin is unlikely to be the endogenous ligand for GPR39 based on the lack of specific binding on GRP39 receptor expressing cells and the absence of signal transduction pathway activation. In addition, a number of studies provided convergent evidence that ghrelin injected intracerebroventricularly or peripherally did not influence food intake, body weight gain, gastric transit, gastrointestinal motility, and gastric vagal afferent activity, as well as pituitary hormone secretions, in rats or mice. Similarly, obestatin did not alter ghrelin-induced stimulation of food intake or gastric transit. Therefore, the present state-of-knowledge on obestatin and GPR39 is leaving many unanswered questions that deserve further consideration. Those relate not only to redefining the biological action of obestatin that should be renamed GAP, but also the identification of the native ligand for GPR39.  相似文献   

3.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

4.
肥胖抑制素(obestatin)和生长激素释放肽(ghrelin)能互相拮抗,参与血糖的调节.其中obestatin与GPR-39(G-protein-coupled receptor 39)结合抑制摄食和胃肠排空、促进胰岛β细胞功能,影响胰岛素的分泌;而ghrelin与生长激素促分泌受体(GHSR1a)结合,促进食欲和胃肠排空,减少脂肪的利用,抑制胰岛细胞凋亡,调节胰岛素的分泌.但两者参与血糖调节的具体机制尚存在争议.  相似文献   

5.
Guo ZF  Ren AJ  Zheng X  Qin YW  Cheng F  Zhang J  Wu H  Yuan WJ  Zou L 《Peptides》2008,29(7):1247-1254
Obestatin, a sibling of ghrelin derived from preproghrelin, opposes several physiological actions of ghrelin. Our previous study has demonstrated that both plasma ghrelin and obestatin levels were decreased significantly 2h after food intake in human. To further expand current knowledge, we investigated the temporal profiles of their levels in ad libitum fed rats, 48h fasted rats and 48h fasted rats refed 2h with a standard chow, crude fiber, 50% glucose or water, and their expressions in stomach, liver and pancreatic islets immunohistochemically. Plasma ghrelin and obestatin levels were measured by EIA. Plasma leptin, insulin and glucose levels were also evaluated. Both plasma ghrelin and obestatin levels increased significantly in fasted rats compared with ad libitum fed rats. The ingestion of standard chow produced a profound and sustained suppression of ghrelin levels, whereas plasma obestatin levels decreased significantly but recovered quickly. Intake of crude fiber or 50% glucose, however, produced a more profound and sustained suppression of obestatin levels, though they had relatively less impact on ghrelin levels. Plasma glucose was the only independent predictor of ghrelin levels, obestatin levels, and ghrelin to obestatin ratios. Obestatin immunoreactivity was detected in the fundus of stomach, liver and pancreatic islets, with roughly similar patterns of distribution to ghrelin. These data show quantitative and qualitative differences in circulating ghrelin and obestatin responses to the short-term feeding status and nutrient composition, and may support a role for obestatin in regulating metabolism and energy homeostasis.  相似文献   

6.
目的: 探究糖尿病大鼠弓状核(ARC)-海马肥胖抑素(obestatin)神经通路构成,以及该通路对大鼠胃运动、胃排空的影响。方法: 健康雄性Wistar大鼠采用果糖溶液诱导胰岛素抵抗加腹腔注射链脲佐菌素的方法制备糖尿病模型,造模之后,随机分为5组:对照组(NS组)、0.1、1和10 pmol obestatin组、obestatin+NBI27914组,每组7只;各组通过置管分别向海马内注射0.5 μl 生理盐水(NS)、obestatin(0.1 pmol、1 pmol、10 pmol)和混合液(10 pmol obestatin + 60 pmol NBI27914),给药后立即记录大鼠胃运动,15 min后进行胃排空研究;通过荧光金(FG)逆行追踪及免疫组化方法比较正常及糖尿病大鼠ARC-海马obestatin神经通路构及ARC obestatin mRNA表达的异同。结果: 与正常大鼠相比,糖尿病大鼠ARC FG/obestatin双标神经元数目显著减少(P<0.05),ARC obestatin mRNA表达量显著下降(P<0.05);obestatin各组可剂量依赖性的抑制大鼠胃运动及胃排空(P<0.05~0.01),obestatin的这些效应可被促肾上腺皮质激素受体1(CRFR1)阻断剂NBI27914部分阻断(P<0.05);obestatin对糖尿病大鼠胃运动和胃排空的抑制效应显著减弱(P<0.05)。结论: ARC-海马之间存在obestatin神经和功能通路,参与糖尿病大鼠胃运动及胃排空调控,且CRFR1信号通路参与该过程。该通路功能的减弱可能参与了糖尿病早期胃动力紊乱的发病。  相似文献   

7.
Green BD  Irwin N  Flatt PR 《Peptides》2007,28(5):981-987
Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 micromol/kg) 4h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion.  相似文献   

8.
Obestatin is a bioactive peptide encoded by the same gene that encodes ghrelin. Our aim was to investigate the effect of obestatin on insulin secretion. We evaluated the effects of obestatin on insulin secretion from rat islet cells which had been incubated overnight in the presence of 8.3, 11.1, and 22.2 mmol/l of glucose. In vivo, the serum levels of glucose and insulin were measured 0, 1, 5, 10, 20, 40, and 60 min after the intravenous administration of saline or glucose (1 g/kg), with or without obestatin, and the area under the 60 min curve of insulin concentration (AUCinsulin) was calculated. Obestatin (0.01-100 nmol/l) inhibited insulin secretion from rat islets in a dose-dependent fashion. In vivo, when administered intravenously to rats together with glucose, obestatin (10, 50, and 250 nmol/kg) inhibited both the rapid 1-min insulin response and the AUCinsulin in a dose-dependent fashion. Our data demonstrate that under glucose-stimulated conditions, exogenous obestatin acts as a potent inhibitor of insulin secretion in anaesthetized rats in vivo as well as in cultured islets in vitro.  相似文献   

9.
Obestatin, derived from the same gene as the hunger hormone ghrelin, may reduce food intake in animals. The role of obestatin in human physiology is unclear. We evaluated cross‐sectional associations between participant characteristics and fasting levels of obestatin as well two other hormones associated with energy balance, ghrelin and leptin. Data are from the baseline visit of the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OMNI‐Heart) Trial that enrolled adults with elevated blood pressure (systolic 120–159 mm Hg or a diastolic of 80–99 mm Hg) but who were otherwise healthy. Partial Spearman's correlations and linear regression models estimated the association between age, gender, BMI, physical activity, and smoking with fasting hormones. Obestatin was directly associated with ghrelin (r = 0.45, P < 0.05). On average, overweight (BMI 25–30) and obese (BMI > 30) individuals had obestatin concentrations that were 12.6 (s.d. 8.8) and 25.4 (s.d. 8.4) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend = 0.002). Overweight (BMI 25–30) and obese (BMI > 30) individuals had ghrelin concentrations that were 161.7 (s.d. 69.6) and 284.7 (s.d. 66.5) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend <0.0001). A 5 unit increase in BMI was associated with 41.3% (s.d. 4.3%) (P < 0.0001) higher leptin. Obestatin and ghrelin are directly correlated and share the same patterns of association with participant characteristics. Modifiable risk factors for chronic diseases, such as BMI, are associated with fasting levels of leptin, obestatin, and ghrelin.  相似文献   

10.
Obestatin is a 23-amino acid peptide derived from preproghrelin, purified from stomach extracts and detected in peripheral plasma. In contrast to ghrelin, obestatin has been reported to inhibit appetite and gastric motility. However, these effects have not been confirmed by some groups. Obestatin was originally proposed to be the ligand for GPR39, a receptor related to the ghrelin receptor subfamily, but this remains controversial. Obestatin and GPR39 are expressed in several tissues, including pancreas. We have investigated the effect of obestatin on islet cell secretion in the perfused rat pancreas. Obestatin, at 10 nM, inhibited glucose-induced insulin secretion, while at 1 nM, it potentiated the insulin response to glucose, arginine and tolbutamide. The potentiated effect of obestatin on glucose-induced insulin output was not observed in the presence of diazoxide, an agent that activates ATP-dependent K(+) channels, thus suggesting that these channels might be sensitive to this peptide. Obestatin failed to significantly modify the glucagon and somatostatin responses to arginine, indicating that its stimulation of insulin output is not mediated by an alpha- or delta-cell paracrine effect. Our results allow us to speculate about a role of obestatin in the control of beta-cell secretion. Furthermore, as an insulinotropic agent, its potential antidiabetic effect may be worthy of investigation.  相似文献   

11.
Obestatin is produced in the stomach from proghrelin by post-translational cleavage. The initial report claimed anorexigenic effects of obestatin in mice. Contrasting studies indicated no effect of obestatin on food intake (FI). We investigated influences of metabolic state (fed/fasted), environmental factors (dark/light phase) and brain Fos response to intraperitoneal (ip) obestatin in rats, and used the protocol from the original study assessing obestatin effects in mice. FI was determined in male rats injected ip before onset of dark or light phase, with obestatin (1 or 5 μmol/kg), CCK8S (3.5 nmol/kg) or 0.15 M NaCl, after fasting (16 h, n = 8/group) or ad libitum (n = 10–14/group) food intake. Fos expression in hypothalamic and brainstem nuclei was examined in freely fed rats 90 min after obestatin (5 μmol/kg), CCK8S (1.75 nmol/kg) or 0.15 M NaCl (n = 4/group). Additionally, fasted mice were injected ip with obestatin (1 μmol/kg) or urocortin 1 (2 nmol/kg) 15 min before food presentation. No effect on FI was observed after obestatin administration during the light and dark phase under both metabolic conditions while CCK8S reduced FI irrespectively of the conditions. The number of Fos positive neurons was not modified by obestatin while CCK8S increased Fos expression in selective brain nuclei. Obestatin did not influence the refeeding response to a fast in mice, while urocortin was effective. Therefore, peripheral obestatin has no effect on FI under various experimental conditions and did not induce Fos in relevant central neuronal circuitries modulating feeding in rodents.  相似文献   

12.
Proghrelin, the precursor of the orexigenic and adipogenic peptide hormone ghrelin, is synthetized in endocrine (A-like) cells in the gastric mucosa. During its cellular processing, proghrelin gives rise to the 28-amino acid peptide desacyl ghrelin, which after octanoylation becomes active acyl ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets of mice and rats. Surprisingly, acyl ghrelin and obestatin had almost identical effects in that they stimulated the secretion of glucagon and inhibited that of PP and somatostatin from both mouse and rat islets. Obestatin inhibited insulin secretion more effectively than acyl ghrelin. In mouse islets, acyl ghrelin inhibited insulin secretion at low doses and stimulated at high. In rat islets, acyl ghrelin inhibited insulin secretion in a dose-dependent manner but the IC(50) for the acyl ghrelin-induced inhibition of insulin release was 7.5 x 10(-8) M, while the EC(50) and IC(50) values, with respect to stimulation of glucagon release and to inhibition of PP and somatostatin release, were in the 3 x 10(-12)-15 x 10(-12) M range. The corresponding EC(50) and IC(50) values for obestatin ranged from 5 x 10(-12) to 20 x 10(-12) M. Desacyl ghrelin per se did not affect islet hormone secretion. However, at a ten times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant concentrations; with obestatin this was the case also for insulin secretion. The combination of obestatin, acyl ghrelin and desacyl ghrelin in concentrations and proportions similar to those found in plasma resulted in effects that were indistinguishable from those induced by obestatin alone. From the data it seems that the effects of endogenous, circulating acyl ghrelin may be overshadowed by obestatin or blunted by desacyl ghrelin.  相似文献   

13.
Obestatin is a novel peptide encoded by the ghrelin precursor gene; however, its effects on gastrointestinal motility remain controversial. Here we have examined the effects of obestatin on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats. We examined the effects of intravenous (IV) injection of obestatin on the percentage motor index (%MI) and phase III-like contractions in the antrum and duodenum. The brain mechanism mediating the action of obestatin on gastroduodenal motility and the involvement of vagal afferent pathway were also examined. Between 30 and 90 min after IV injection, obestatin decreased the %MI in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats given 3 g of chow after 18 h of fasting. Immunohistochemical analysis demonstrated that corticotropin-releasing factor- and urocortin-2-containing neurons in the paraventricular nucleus in the hypothalamus were activated by IV injection of obestatin. Intracerebroventricular injection of CRF type 1 and type 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Capsaicin treatment blocked the effects of obestatin on duodenal motility but not on antral motility. Obestatin failed to antagonize ghrelin-induced stimulation of gastroduodenal motility. These results suggest that, in the fed state, obestatin inhibits motor activity in the antrum and duodenum and that CRF type 1 and type 2 receptors in the brain might be involved in these effects of obestatin on gastroduodenal motility.  相似文献   

14.
Obestatin improves memory performance and causes anxiolytic effects in rats   总被引:10,自引:0,他引:10  
Obestatin is a peptide hormone that is derived from the same polypeptide precursor (preprogrelin) as ghrelin, but it acts in opposing way on ingestive behavior. Our previous studies showed that ghrelin affects memory and anxiety. Here, we studied the possible effects of icv obestatin injection in rats upon memory retention (using two different paradigms), anxiety like behavior (plus maze test), and food intake. Obestatin induces an increase in the percentage of open arms entries (Obestatin 3.0nmol/rat: 61.74+/-1.81), and percentage of time spent in open arms (Obestatin 3.0nmol/rat: 72.07+/-4.21) in relation to the control (33.31+/-1.54; 25.82+/-1.68), indicating an anxiolytic effect. The two doses of obestatin increased latency time in a step down test and the percentage time of novel object exploration, suggesting that the peptide influences learning and memory processes that involve the hippocampus and the amygdala. This report provides evidence indicating that obestatin effects are functionally opposite on anxiety and hunger to the ghrelin effects, while both these related peptides increase memory retention.  相似文献   

15.
To explore the effects of ghrelin on disturbed myocardial energy metabolism during chronic heart failure (CHF). Rats were subcutaneously injected with isoproterenol (ISO) for 10 days with or without ghrelin for another 10 days. Enzyme immunoassay was to measure ghrelin concentrations. Compared with the control group, ISO‐treated rats showed suppressed cardiac function with high ghrelin/GHS‐R expressions. These rats also showed the decreases in food consumption and weight. The decreased levels of plasma glucose and myocardial glucogen, but the high lactate in blood and myocardium showed myocardial metabolic disturbance. Compared with the group given ISO alone, the rats with ghrelin (20 and 100 µg/kg/day) improved cardiac dysfunction and increased food intake by 13.5 and 14.2% (both P < 0.01), and rate of weight gain by 95% (P < 0.05) and 1.71‐fold (P < 0.01), respectively. The plasma glucose were increased by 49.7 and 50.8% (both P < 0.01), and myocardial glucogen, by 40.5 and 51.7% (both P < 0.01), but blood lactate decreased by 1.56‐ and 1.96‐fold (both P < 0.01), and myocardial lactate by 32.1 and 48.7% (both P < 0.05), respectively. Their MCT1 mRNA and protein expressions increased. The myocardial ghrelin/GHS‐R pathway can be upregulated during CHF. The ghrelin can attenuate cardiac dysfunction and energy metabolic disturbance in CHF rats. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Obestatin is a second peptide derived from the preproghrelin polypeptide. It was originally thought to have anorexigenic effects, thereby functioning as an antagonist of ghrelin. However, this has been a subject of debate ever since. Since acylated ghrelin strongly induces insulin resistance, it could be hypothesized that obestatin plays a role in glucose homeostasis as well. In the present study we evaluated the effect of obestatin on glucose and insulin metabolism in the systemic and portal circulation. Obestatin 200 nmol/kg was administered systemically as a single intravenous bolus injection to fasted pentobarbital anesthetized adult male Wistar rats. Up to 50 min after administration, blood samples were taken to measure glucose and insulin concentrations, both in the portal and in the systemic circulation. The effect of obestatin was evaluated in fasted and in glucose-stimulated conditions (IVGTT) and compared to control groups treated with saline or IVGTT, respectively. Intravenous administration of obestatin did not have any effect on glucose and insulin concentrations, neither systemic nor portal, when compared to the control groups. Only the glucose peak 1 min after administration of IVGTT was slightly higher in the obestatin treated rats: 605.8 ± 106.3% vs. 522.2 ± 47.1% in the portal circulation, respectively (NS), and 800.7 ± 78.7% vs. 549.6 ± 37.0% in the systemic circulation, respectively (P < 0.02), but it can be debated whether this has any clinical relevance. In the present study, we demonstrated that intravenously administered obestatin does not influence glucose and insulin concentrations, neither in the portal nor in the systemic circulation.  相似文献   

17.
Gastroesophageal reflux disease (GERD) is often associated with decreased upper gastrointestinal motility, and ghrelin is an appetite-stimulating hormone known to increase gastrointestinal motility. We investigated whether ghrelin signaling is impaired in rats with GERD and studied its involvement in upper gastrointestinal motility. GERD was induced surgically in Wistar rats. Rats were injected intravenously with ghrelin (3 nmol/rat), after which gastric emptying, food intake, gastroduodenal motility, and growth hormone (GH) release were investigated. Furthermore, plasma ghrelin levels and the expression of ghrelin-related genes in the stomach and hypothalamus were examined. In addition, we administered ghrelin to GERD rats treated with rikkunshito, a Kampo medicine, and examined its effects on gastroduodenal motility. GERD rats showed a considerable decrease in gastric emptying, food intake, and antral motility. Ghrelin administration significantly increased gastric emptying, food intake, and antral and duodenal motility in sham-operated rats, but not in GERD rats. The effect of ghrelin on GH release was also attenuated in GERD rats, which had significantly increased plasma ghrelin levels and expression of orexigenic neuropeptide Y/agouti-related peptide mRNA in the hypothalamus. The number of ghrelin-positive cells in the gastric body decreased in GERD rats, but the expression of gastric preproghrelin and GH secretagogue receptor mRNA was not affected. However, when ghrelin was exogenously administered to GERD rats treated with rikkunshito, a significant increase in antral motility was observed. These results suggest that gastrointestinal dysmotility is associated with impaired ghrelin signaling in GERD rats and that rikkunshito restores gastrointestinal motility by improving the ghrelin response.  相似文献   

18.
Unniappan S  Speck M  Kieffer TJ 《Peptides》2008,29(8):1354-1361
Obestatin is purported to be a peptide hormone encoded in preproghrelin. We studied the metabolic effects of continuous infusion of obestatin via subcutaneously implanted osmotic mini-pumps. Administration of up to 500nmol/kg body weight/day obestatin did not change 24h cumulative food intake or body weight in rats. Similarly, no effects were observed when obestatin was infused at 1000nmol/kg body weight/day for seven days. This dose of obestatin infused during a 24h fast did not alter weight loss, suggesting that obestatin has no effect on energy expenditure, and this dose did not alter glucose or insulin responses during an IPGTT. Obestatin was originally proposed to interact with GPR39 and subsequently the receptor for GLP-1. While both receptors are expressed in pancreatic islets, incubation with obestatin did not alter insulin release from islets in vitro. Moreover, obestatin did not bind to INS-1 beta-cells or HEK cells overexpressing GLP-1 receptors or displace GLP-1 binding to these cells. Our findings do not support the concept that obestatin is a hormone with metabolic actions.  相似文献   

19.
Obestatin has recently been discovered in the rat stomach. As for ghrelin, the 23-amino acid obestatin is also derived from post-translational processing of the prepro-ghrelin gene but seems to have opposite effects on feed intake. In avian species, ghrelin is mainly present in the proventriculus and decreases feed intake, as opposed to its orexigenic properties in mammals. An obestatin-like sequence was also found in the avian ghrelin precursor protein but the potential involvement of this peptide in appetite regulation of chickens is unclear. We therefore investigated the effects of a single peripheral administration of this predicted "chicken" obestatin peptide on voluntary feed intake of 7- to 9-day-old meat-type and layer-type chicks. "Chicken" obestatin was injected intraperitoneally or intravenously at a dose of 1 nmol or 10 nmol/100 g body weight and feed intake was measured up to 4 h post injection. None of these treatments did reveal any effect of the putative "chicken" obestatin on appetite of either meat-type of layer-type chicks. Furthermore, "chicken" obestatin also failed to affect the in vitro contractility of muscle strips from crop and proventriculus. In conclusion, in the given experimental settings, the putative "chicken" obestatin has indistinctive physiological effects on feed intake and in vitro muscle contractility of gut segments, and hence its functional properties in ingestive behavior of avian species remain obscure.  相似文献   

20.
Obestatin: its physicochemical characteristics and physiological functions   总被引:1,自引:0,他引:1  
Tang SQ  Jiang QY  Zhang YL  Zhu XT  Shu G  Gao P  Feng DY  Wang XQ  Dong XY 《Peptides》2008,29(4):639-645
Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene with ghrelin, was initially reported to reduce food intake, body weight gain, gastric emptying and suppress intestinal motility through an interaction with the orphan receptor GPR39. However, recently reports have shown that above findings had been questioned by several groups. Further studies explained that obestatin was involved in inhibiting thirst and anxiety, improving memory, regulating sleep, affecting cell proliferation, and increasing the secretion of pancreatic juice enzymes. We also identified that obestatin could stimulate piglet liver and adipose cell proliferation, and inhibit the secretion of IGF-I. According to the controversy over the effects and the cognate ligand of obestatin, here we provide the latest review on the structure, distribution and physiological functions of obestatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号