首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Oude Elferink R 《Trends in biotechnology》2003,21(4):146-7; discussion 147-8
In a recent paper by Michiels et al. an important step was made towards genuine high throughput functional genomics. The authors produced an arrayed adenoviral library containing >120000 cDNAs isolated from human placenta. This library can be used for arrayed transduction of cell lines in phenotypic assays and to screen for genes involved in the induction of any phenotype for which a robust high-throughput assay can be designed.  相似文献   

5.
Cell division is an essential cellular process that requires an array of known and unknown proteins for its spatial and temporal regulation. Here we develop a novel, high-throughput screening method for the identification of bacterial cell division genes and regulators. The method combines the over-expression of a shotgun genomic expression library to perturb the cell division process with high-throughput flow cytometry sorting to screen many thousands of clones. Using this approach, we recovered clones with a filamentous morphology for the model bacterium, Escherichia coli. Genetic analysis revealed that our screen identified both known cell division genes, and genes that have not previously been identified to be involved in cell division. This novel screening strategy is applicable to a wide range of organisms, including pathogenic bacteria, where cell division genes and regulators are attractive drug targets for antibiotic development.  相似文献   

6.
7.
To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes. The screen identified several known and approximately 100 candidate regulators of mitotic progression and proliferation; the availability of multiple shRNAs targeting the same gene facilitated functional validation of putative hits. This work provides a widely applicable resource for loss-of-function screens, as well as a roadmap for its application to biological discovery.  相似文献   

8.
The transition from vegetative mycelium to fruit body in truffles requires differentiation processes which lead to edible fruit bodies (ascomata) consisting of different cell and tissue types. The identification of genes differentially expressed during these developmental processes can contribute greatly to a better understanding of truffle morphogenesis. A cDNA library was constructed from vegetative mycelium RNAs of the white truffle Tuber borchii, and 214 cDNAs were sequenced. Up to 58% of the expressed sequence tags corresponded to known genes. The majority of the identified sequences represented housekeeping proteins, i.e., proteins involved in gene or protein expression, cell wall formation, primary and secondary metabolism, and signaling pathways. We screened 171 arrayed cDNAs by using cDNA probes constructed from mRNAs of vegetative mycelium and ascomata to identify fruit body-regulated genes. Comparisons of signals from vegetative mycelium and fruit bodies bearing 15 or 70% mature spores revealed significant differences in the expression levels for up to 33% of the investigated genes. The expression levels for six highly regulated genes were confirmed by RNA blot analyses. The expression of glutamine synthetase, 5-aminolevulinic acid synthetase, isocitrate lyase, thioredoxin, glucan 1,3-beta-glucosidase, and UDP-glucose:sterol glucosyl transferase was highly up-regulated, suggesting that amino acid biosynthesis, the glyoxylate cycle pathway, and cell wall synthesis are strikingly altered during morphogenesis.  相似文献   

9.
10.
11.
The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors.  相似文献   

12.
Low stringency screening of a human P1 artificial chromosome library using a human hair keratin-associated protein (hKAP1.1A) gene probe resulted in the isolation of six P1 artificial chromosome clones. End sequencing and EMBO/GenBank(TM) data base analysis showed these clones to be contained in four previously sequenced human bacterial artificial chromosome clones present on chromosome 17q12-21 and arrayed into two large contigs of 290 and 225 kilobase pairs (kb) in size. A fifth, partially sequenced human bacterial artificial chromosome clone data base sequence overlapped and closed both of these contigs. One end of this 600-kb cluster harbored six gene loci for previously described human type I hair keratin genes. The other end of this cluster contained the human type I cytokeratin K20 and K12 gene loci. The center of the cluster, starting 35 kb downstream of the hHa3-I hair keratin gene, contained 37 genes for high/ultrahigh sulfur hair keratin-associated proteins (KAPs), which could be divided into a total of 7 KAP multigene families based on amino acid homology comparisons with previously identified sheep, mouse, and rabbit KAPs. To date, 26 human KAP cDNA clones have been isolated through screening of an arrayed human scalp cDNA library by means of specific 3'-noncoding region polymerase chain reaction probes derived from the identified KAP gene sequences. This screening also yielded four additional cDNA sequences whose genes were not present on this gene cluster but belonged to specific KAP gene families present on this contig. Hair follicle in situ hybridization data for single members of five different KAP multigene families all showed localization of the respective mRNAs to the upper cortex of the hair shaft.  相似文献   

13.
The transition from vegetative mycelium to fruit body in truffles requires differentiation processes which lead to edible fruit bodies (ascomata) consisting of different cell and tissue types. The identification of genes differentially expressed during these developmental processes can contribute greatly to a better understanding of truffle morphogenesis. A cDNA library was constructed from vegetative mycelium RNAs of the white truffle Tuber borchii, and 214 cDNAs were sequenced. Up to 58% of the expressed sequence tags corresponded to known genes. The majority of the identified sequences represented housekeeping proteins, i.e., proteins involved in gene or protein expression, cell wall formation, primary and secondary metabolism, and signaling pathways. We screened 171 arrayed cDNAs by using cDNA probes constructed from mRNAs of vegetative mycelium and ascomata to identify fruit body-regulated genes. Comparisons of signals from vegetative mycelium and fruit bodies bearing 15 or 70% mature spores revealed significant differences in the expression levels for up to 33% of the investigated genes. The expression levels for six highly regulated genes were confirmed by RNA blot analyses. The expression of glutamine synthetase, 5-aminolevulinic acid synthetase, isocitrate lyase, thioredoxin, glucan 1,3-β-glucosidase, and UDP-glucose:sterol glucosyl transferase was highly up-regulated, suggesting that amino acid biosynthesis, the glyoxylate cycle pathway, and cell wall synthesis are strikingly altered during morphogenesis.  相似文献   

14.
Ectomycorrhiza development alters gene expression in the fungal and plant symbionts. The identification of a large number of genes expressed exclusively or predominantly in the symbiosis will contribute greatly to the understanding of the development of the ectomycorrhizal symbiosis. We have constructed a cDNA library of 4-day-old Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza and sequenced 850 cDNAs cloned randomly or obtained through suppression subtractive hybridization (SSH). Based on the absence of a database match, 43% of the ectomycorrhiza ESTs are coding for novel genes. At the developmental stage analysed (fungal sheath formation), the majority of the identified sequences represented 'housekeeping' proteins, i.e. proteins involved in gene/protein expression, cell-wall proteins, metabolic enzymes, and components of signalling systems. We screened arrayed cDNAs to identify symbiosis-regulated genes by using differential hybridization. Comparisons of signals from free-living partners and symbiotic tissues revealed significant differences in expression levels (differential expression ratio >2.5) for 17% of the genes analysed. No ectomycorrhiza-specific gene was detected. The results successfully demonstrate the use of the cDNA array and SSH systems as general approaches for dissecting symbiosis development, and provide the first global picture of the cellular functions operating in ectomycorrhiza.  相似文献   

15.
Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays) or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer''s disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the annotated human PPI network via a web frontend that allows the construction of context-specific networks in several ways.  相似文献   

16.
The Ras-MAPK and PI3K-AKT pathways are conserved in metazoan organisms, which involve a series of signaling cascades and form the basis for numerous physiological and pathological processes. Here we report on yeast two hybrid screening results of a protein interaction network around the known components of human Ras-MAPK/PI3K pathways. A total of 42 independent cDNA library screenings resulted in 200 protein-protein interaction (PPI) pairs among 180 molecules. Most of the proteins formed a large cluster that contains 193 PPIs between 169 proteins. Seventy-four interactions indicate high-confidence according to bioinformatics analysis. The prey list contains high enrichment genes with specific Gene Ontology (GO) terms such as response to stress and response to external stimulus. Most interactions link the Ras signaling pathway with various cellular processes. Five interactions were validated by coimmunoprecipitation and colocalization assays in mammalian cells to confirm their in vivo interactions. This protein interaction network provides further insights into the molecular mechanism of Ras-MAPK/PI3K signaling pathways.  相似文献   

17.
18.
It has been well established that the shRNA library has a significant advantage for screening the important genes involved in the interested biological pathways. Currently, the available libraries mainly target the known protein genes in human and mouse. With the expanding roles of lncRNA in biology, there is a great demand to design shRNAs targeting these non-coding RNAs. In this regard, a completely random shRNA library targeting all the genes with known or unknown sequences is of priority. Here we provide a practical workflow for construction of such a random shRNA library. In the novel shRNA library, there are about tens of different shRNAs targeting one gene, and thus significantly avoids the off-target effects.  相似文献   

19.
Evolutionarily conserved mechanisms that control aging are predicted to have prereproductive functions in order to be subject to natural selection. Genes that are essential for growth and development are highly conserved in evolution, but their role in longevity has not previously been assessed. We screened 2,700 genes essential for Caenorhabditis elegans development and identified 64 genes that extend lifespan when inactivated postdevelopmentally. These candidate lifespan regulators are highly conserved from yeast to humans. Classification of the candidate lifespan regulators into functional groups identified the expected insulin and metabolic pathways but also revealed enrichment for translation, RNA, and chromatin factors. Many of these essential gene inactivations extend lifespan as much as the strongest known regulators of aging. Early gene inactivations of these essential genes caused growth arrest at larval stages, and some of these arrested animals live much longer than wild-type adults. daf-16 is required for the enhanced survival of arrested larvae, suggesting that the increased longevity is a physiological response to the essential gene inactivation. These results suggest that insulin-signaling pathways play a role in regulation of aging at any stage in life.  相似文献   

20.
The uncultivated bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a central role in providing their host with fixed carbon. While this intimate association between host and symbiont indicates tight integration and coordination of function via cellular communication mechanisms, no such systems have been identified. To elucidate potential signal transduction pathways in symbionts that may mediate symbiont-host communication, we cloned and characterized a gene encoding a histidine protein kinase homolog isolated from a symbiont fosmid library. The gene, designated rssA (for Riftia symbiont signal kinase), resembles known sensor kinases and encodes a protein capable of phosphorylating response regulators in Escherichia coli. A second open reading frame, rssB (for Riftia symbiont signal regulator), encodes a protein similar to known response regulators. These results suggest that the symbionts utilize a phosphotransfer signal transduction mechanism to communicate external signals that may mediate recognition of or survival within the host. The specific signals eliciting a response by the signal transduction proteins of the symbiont remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号