首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Methane (CH4) oxidation and the methanotrophic community structure of a pristine New Zealand beech forest were investigated using biochemical and molecular methods. Phospholipid-fatty acid-stable-isotope probing (PLFA-SIP) was used to identify the active population of methanotrophs in soil beneath the forest floor, while terminal-restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the pmoA gene were used to characterize the methanotrophic community. PLFA-SIP suggested that type II methanotrophs were the predominant active group. T-RFLP and cloning and sequencing of the pmoA genes revealed that the methanotrophic community was diverse, and a slightly higher number of type II methanotrophs were detected in the clone library. Most of the clones from type II methanotrophs were related to uncultured pmoA genes obtained directly from environmental samples, while clones from type I were distantly related to Methylococcus capsulatus. A combined data analysis suggested that the type II methanotrophs may be mainly responsible for atmospheric CH4 consumption. Further sequence analysis suggested that most of the methanotrophs detected shared their phylogeny with methanotrophs reported from soils in the Northern Hemisphere. However, some of the pmoA sequences obtained from this forest had comparatively low similarity (<97%) to known sequences available in public databases, suggesting that they may belong to novel groups of methanotrophic bacteria. Different methods of methanotrophic community analysis were also compared, and it is suggested that a combination of molecular methods with PLFA-SIP can address several shortcomings of stable isotope probing.  相似文献   

2.
3.
Aims:  To combine molecular and cultivation techniques to characterize the methanotrophic community in the soil–water interface (SWI) and rhizospheric soil from flooded rice fields in Uruguay, a temperate region in South America.
Methods and Results:  A novel type I, related to the genus Methylococcus , and three type II methanotrophs were isolated from the highest positive dilution steps from the most probable number (MPN) counts. Potential methane oxidation activities measured in slurried samples were higher in the rhizospheric soil compared to the SWI and were stimulated by N-fertilization. PmoA (particulate methane monooxygenase) clone libraries were constructed for both rice microsites. SWI clones clustered in six groups related to cultivated and uncultivated members from different ecosystems of the genera Methylobacter , Methylomonas , Methylococcus and a novel type I sublineage while cultivation and T-RFLP (terminal restriction fragment length polymorphism) analysis confirmed the presence of type II methanotrophs.
Conclusions:  Cultivation techniques, cloning analysis and T-RFLP fingerprinting of the pmoA gene revealed a diverse methanotrophic community in the rice rhizospheric soil and SWI.
Significance and Impact of the Study:  This study reports, for the first time, the analysis of the methanotrophic diversity in rice SWI and this diversity may be exploited in reducing methane emissions.  相似文献   

4.
The main gap in our knowledge about what determines the rate of CH4 oxidation in forest soils is the biology of the microorganisms involved, the identity of which remains unclear. In this study, we used stable-isotope probing (SIP) following 13CH4 incorporation into phospholipid fatty acids (PLFAs) and DNA/RNA, and sequencing of methane mono-oxygenase ( pmoA ) genes, to identify the influence of variation in community composition on CH4 oxidation rates. The rates of 13C incorporation into PLFAs differed between horizons, with low 13C incorporation in the organic soil and relatively high 13C incorporation into the two mineral horizons. The microbial community composition of the methanotrophs incorporating the 13C label also differed between horizons, and statistical analyses suggested that the methanotroph community composition was a major cause of variation in CH4 oxidation rates. Both PLFA and pmoA -based data indicated that CH4 oxidizers in this soil belong to the uncultivated 'upland soil cluster α'. CH4 oxidation potential exhibited the opposite pattern to 13C incorporation, suggesting that CH4 oxidation potential assays may correlate poorly with in situ oxidation rates. The DNA/RNA-SIP assay was not successful, most likely due to insufficient 13C-incorporation into DNA/RNA. The limitations of the technique are briefly discussed.  相似文献   

5.
6.
Most of the methane (CH4) emission from rice fields is derived from plant photosynthates, which are converted to CH4. Rice cluster I (RC-1) archaea colonizing the rhizosphere were found to be the methanogens responsible for this process. Hence, RC-1 methanogens seem to play a crucial role in emission of the greenhouse gas CH4. We determined the community composition and activity of methanogens colonizing the roots of eight different rice cultivars after growth on both Italian rice soil and river bank soil, which contained different communities of methanogenic archaea. The community composition was analyzed by terminal restriction fragment length polymorphism and cloning/sequencing of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase. When grown on rice field soil, the methanogenic community of the different rice cultivars was always dominated by RC-1 methanogens. In contrast, roots were colonized by Methanomicrobiales when grown on river bank soil, in which RC-1 methanogens were initially not detectable. Roots colonized with Methanomicrobiales compared with RC-1 exhibited lower CH4 production and CH4 emission rates. The results show that the type of methanogens colonizing rice roots has a potentially important impact on the global CH4 cycle.  相似文献   

7.
Microbial methane oxidation is a key process in the global methane cycle. In the context of global warming, it is important to understand the responses of the methane-oxidizing microbial community to temperature changes in terms of community structure and activity. We studied microbial methane oxidation in a laboratory-column system in which a diffusive CH4/O2 counter gradient was maintained in an unsaturated porous medium at temperatures between 4 and 20 °C. Methane oxidation was highly efficient at all temperatures, as on average 99 ± 0.5% of methane supplied to the system was oxidized. The methanotrophic community that established in the model system after initial inoculation appeared to be able to adapt quickly to different temperatures, as methane emissions remained low even after the system was subjected to abrupt temperature changes. FISH showed that Type I as well as Type II methanotrophs were probably responsible for the observed activity in the column system, with a dominance of Type I methanotrophs. Cloning and sequencing suggested that Type I methanotrophs were represented by the genus Methylobacter while Type II were represented by Methylocystis . The results suggest that in an unsaturated system with diffusive substrate supply, direct effects of temperature on apparent methanotrophic activity and community may be of minor importance. However, this remains to be verified in the field.  相似文献   

8.
Biological methane oxidation is a key process in the methane cycle of wetland ecosystems. The methanotrophic biomass may be grazed by protozoa, thus linking the methane cycle to the soil microbial food web. In the present study, the edibility of different methanotrophs for soil protozoa was compared. The number of methanotroph-feeding protozoa in a rice field soil was estimated by determining the most-probable number (MPN) using methanotrophs as food bacteria; naked amoebae and flagellates were the dominant protozoa. Among ten methanotrophic strains examined as a food source, seven yielded a number of protozoa comparable with the yield with Escherichia coli [104 MPN (g soil dry weight)−1], and three out of four Methylocystis spp. yielded significantly fewer numbers [102–103 MPN (g soil dry weight)−1]. The lower edibility of the Methylocystis spp. was not explained either by their growth phase or by harmful effects on protozoa. Incubation of the soil under methane resulted in a higher number of protozoa actively grazing on methanotrophs, especially on the less-edible group. Protozoa isolated from the soil demonstrated a grazing preference on the different methanotrophs consistent with the results of MPN counts. The results indicate that selective grazing by protozoa may be a biological factor affecting the methanotrophic community in a wetland soil.  相似文献   

9.
Consumption of NO by methanotrophic bacteria in pure culture and in soil   总被引:2,自引:0,他引:2  
Abstract The methanotrophs Methylomonas angile (type I) and Methylosinus trichosporium (type II) produced nitrite, nitrate and N2O during growth on methane, apparently by heterotrophic nitrification of ammonium. The methanotrophs were also able to consume NO but did not produce it. After incubation of soil from a drained paddy field in the presence of CH4 the numbers of methanotrophs increased from 105 to 107 per gram dry weigth. The thus enriched soil showed increased rates of NO consumption while rates of NO production did not change.  相似文献   

10.
Exposure of mineral soils to atmospherically relevant concentrations of 13CH4 (2 ppmv) followed by 13C-phospholipid fatty acid stable isotope probing allows assessment of the high-affinity methanotrophic bacterial sink in hitherto unattainable detail. Utilizing this approach, inorganic fertilizer-treated soils from a long-term agricultural experiment were shown to display dramatic reduction, by > 70%, of the methanotrophic bacterial cell numbers. Reduction in the methane sink capacity of the soils was slightly lower than the directly observed reduction in methanotrophic bacterial counts, indicating that the inhibitory effects on high-affinity methanotrophic bacteria are not fully expressed through CH4 oxidation rates. The results emphasize the need to rigorously assess commonly applied agricultural practices with respect to their unseen negative impacts on soil microbial diversity in relation to terrestrial sinks for atmospheric trace gases.  相似文献   

11.
Production, oxidation and emission of methane in rice paddies   总被引:15,自引:0,他引:15  
Abstract Production and emission of methane from submerged paddy soil was studied in laboratory rice cultures and in Italian paddy fields. Up to 80% of the CH4 produced in the paddy soil did not reach the atmosphere but was apparently oxidized in the rhizosphere. CH4 emission through the rice plants was inhibited by an atmosphere of pure O2 but was stimulated by an atmosphere of pure N2 or an atmosphere containing 5% acetylene. Gas bubbles taken from the submerged soil contained up to 60% CH4, but only < 1% CH4 after the bubbles had passed the soil-water interface or had entered the intercellular gas space system of the rice plants. CH4 oxidation activities were detected in the oxic surface layer of the submerged paddy soil. Flooding the paddy soil with water containing > 0.15% sea salt (0.01% sulfate) resulted in a strong inhibition of the rates of methanogenesis and a decrease in the rates of CH4 emission. This result explains the observation of relatively low CH4 emission rates in rice paddy areas flooded with brackish water.  相似文献   

12.
Reconstituted municipal solid waste (MSW) with varying contents of putrescible and cellulosic waste was incubated anaerobically under mesophilic conditions. Standard physicochemical parameters were monitored, together with stable isotopic signatures of produced CH4 and CO2. δ13C values for CH4 indicated a change of methanogenic metabolism with time. CH4 was predominantly produced from H2/CO2 at the beginning of the incubations. This period was associated with important shifts in archaeal communities monitored by automated ribosomal intergenic spacer analysis (ARISA) and FISH of oligonucleotidic probes targeting specifically 16S rRNA gene of various methanogenic groups. The onset of the active methane generation phase was characterized by an increase of CH4δ13C, indicating a progressive shift toward an aceticlastic metabolism. When the methane production levelled off, a decrease in the isotopic signature was observed toward values characteristics of hydrogenotrophic metabolism. ARISA profiles were, however, found to be stable from the beginning of the active methane generation phase until the end of the experiment. FISH observation indicated that members of the family Methanosarcinaceae were predominant in the archaeal community during this period, suggesting that these methanogens might exhibit a high metabolic versatility during methanization of waste.  相似文献   

13.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   

14.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   

15.
Growth of methanotrophs in methane and oxygen counter gradients   总被引:11,自引:0,他引:11  
Abstract A gel-stabilized system with counter gradients of CH4 and O2 was used to grow methanotrophs from wetland, agricultural and forest soils and lake sediment. Columns of semi-solid nitrate- or ammonium-minerai salts medium were continuously flushed at opposite ends with CH4 and O2 to create opposing concentration gradients of the two gases. Methanotrophs grew from all samples except forest soil, and were visible as thin bands after 5 to 15 days of incubation. The position of growth was CH4 and O2 concentration-dependent and occurred at the point of maximum possible CH4 oxidation, where both substrates were completely consumed. Evidence was obtained for denitrification and nitrification activities concomitant with CH4 oxidation. This approach may be useful to isolate methanotrophs with different CH4 and O2 requirements and to study their interactions with other groups of bacteria in nature.  相似文献   

16.
Methanogenesis and methanotrophy within a Sphagnum peatland   总被引:4,自引:0,他引:4  
Abstract: Methane production and consumption activities were examined in a Massachusetts peatland. Peat from depths of 5–35 cm incubated under anaerobic conditions, produced an average of 2 nmol CH4 g−1 h−1 with highest rates for peat fractions between 25–30 cm depth. Extracted microbial nucleic acids showed the strongest relative hybridization with a 16S rRNA oligonucleotide probe specific for Archaea with samples from the 25–30 cm depth. In aerobic laboratory incubations, the peat consumed methane with a maximum velocity of 67 nmol CH4 g−1 h−1 and a K s of 1.6 μM. Methane consumption activity was concentrated 4–9 cm below the peat surface, which corresponds to the aerobic, partially decomposed region in this peatland. Phospholipid fatty acid analysis of peat fractions demonstrated an abundance of methanotrophic bacteria within the region of methane consumption activity. Increases in temperature up to 30°C produced an increase in methane consumption rates for shallow samples, but not for samples taken from depths greater than 9 cm. Nitrogen fixation experiments were carried out using 15N2 uptake in order to avoid problems associated with inhibition of methanotrophy. These experiments demonstrated that methane in peat samples did not stimulate nitrogen fixation activity, nor could activity be correlated with the presence of methanotrophic bacteria in peat fractions.  相似文献   

17.
Rice roots select for type I methanotrophs in rice field soil   总被引:1,自引:0,他引:1  
Methanotrophs are an important regulator for reducing methane (CH4) emissions from rice field soils. The type I group of the proteobacterial methanotrophs are generally favored at low CH4 concentration and high O2 availability, while the type II group lives better under high CH4 and limiting O2 conditions. Such physiological differences are possibly reflected in their ecological preferences. In the present study, methanotrophic compositions were compared between rice-planted soil and non-planted soil and between the rhizosphere and rice roots by using terminal restriction fragment length polymorphism (T-RFLP) analysis of particulate methane monooxygenase (pmoA) genes. In addition, the effects of rice variety and nitrogen fertilizer were evaluated. The results showed that the terminal restriction fragments (T-RFs), which were characteristic for type I methanotrophs, substantially increased in the rhizosphere and on the roots compared with non-planted soils. Furthermore, the relative abundances of the type I methanotroph T-RFs were greater on roots than in the rhizosphere. Of type I methanotrophs, the 79 bp T-RF, which was characteristic for an unknown group or Methylococcus/Methylocaldum, markedly increased in field samples, while the 437 bp, which possibly represented Methylomonas, dominated in microcosm samples. These results suggested that type I methanotrophs were enriched or selected for by rice roots compared to type II methanotrophs. However, the members of type I methanotrophs are dynamic and sensitive to environmental change. Rice planting appeared to increase the copy number of pmoA genes relative to the non-planted soils. However, neither the rice variety nor the N fertilizer significantly influenced the dynamics of the methanotrophic community.  相似文献   

18.
19.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

20.
Methanotrophic bacteria play a crucial role in regulating the emission of CH4 from rice fields into the atmosphere. We investigated the CH4 oxidation activity together with the diversity of methanotrophic bacteria in ten rice field soils from different geographic locations. Upon incubation of aerated soil slurries under 7% CH4, rates of CH4 oxidation increased after a lag phase of 1-4 days and reached values of 3-10 micromol d(-1) g-dw(-1) soil. The methanotrophic community was assayed by retrieval of the pmoA gene which encodes the a subunit of the particulate methane monooxygenase. After extraction of DNA from actively CH4-oxidizing soil samples and PCR-amplification of the pmoA, the community was analyzed by Denaturant Gradient Gel Electrophoresis (DGGE) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). DGGE bands were excised, the pmoA re-amplified, sequenced and the encoded amino acid sequence comparatively analyzed by phylogenetic treeing. The analyses allowed the detection of pmoA sequences related to the following methanotrophic genera: the type-I methanotrophs Methylobacter, Methylomicrobium, Methylococcus and Methylocaldum, and the type-II methanotrophs Methylocystis and Methylosinus. T-RFLP analysis detected a similar diversity, but type-II pmoA more frequently than DGGE. All soils but one contained type-II in addition to type-I methanotrophs. Type-I Methylomonas was not detected at all. Different combinations of methanotrophic genera were detected in the different soils. However, there was no obvious geographic pattern of the distribution of methanotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号