首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nuclear transport of viral nucleic acids is crucial to the life cycle of many viruses. Borna disease virus (BDV) belongs to the order Mononegavirales and replicates its RNA genome in the nucleus. Previous studies have suggested that BDV nucleoprotein (N) and phosphoprotein (P) have important functions in the nuclear import of the viral ribonucleoprotein (RNP) complexes via their nuclear targeting activity. Here, we showed that BDV N has cytoplasmic localization activity, which is mediated by a nuclear export signal (NES) within the sequence. Our analysis using deletion and substitution mutants of N revealed that NES of BDV N consists of a canonical leucine-rich motif and that the nuclear export activity of the protein is mediated through the chromosome region maintenance protein-dependent pathway. Interspecies heterokaryon assay indicated that BDV N shuttles between the nucleus and cytoplasm as a nucleocytoplasmic shuttling protein. Furthermore, interestingly, the NES region overlaps a binding site to the BDV P protein, and nuclear export of a 38-kDa form of BDV N is prevented by coexpression of P. These results suggested that BDV N has two contrary activities, nuclear localization and export activity, and plays a critical role in the nucleocytoplasmic transport of BDV RNP by interaction with other viral proteins.  相似文献   

2.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

3.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

4.
5.
6.
SUMOylation is a form of post-translational modification shown to control nuclear transport. Krüppel-like factor 5 (KLF5) is an important mediator of cell proliferation and is primarily localized to the nucleus. Here we show that mouse KLF5 is SUMOylated at lysine residues 151 and 202. Mutation of these two lysines or two conserved nearby glutamates results in the loss of SUMOylation and increased cytoplasmic distribution of KLF5, suggesting that SUMOylation enhances nuclear localization of KLF5. Lysine 151 is adjacent to a nuclear export signal (NES) that resembles a consensus NES. The NES in KLF5 directs a fused green fluorescence protein to the cytoplasm, binds the nuclear export receptor CRM1, and is inhibited by leptomycin and site-directed mutagenesis. SUMOylation facilitates nuclear localization of KLF5 by inhibiting this NES activity, and enhances the ability of KLF5 to stimulate anchorage-independent growth of HCT116 colon cancer cells. A survey of proteins whose nuclear localization is regulated by SUMOylation reveals that SUMOylation sites are frequently located in close proximity to NESs. A relatively common mechanism for SUMOylation to regulate nucleocytoplasmic transport may lie in the interplay between neighboring NES and SUMOylation motifs.  相似文献   

7.
L Zhao  C Zheng 《PloS one》2012,7(8):e41825
VP19C is a structural protein of herpes simplex virus type 1 viral particle, which is essential for assembly of the capsid. In this study, a nuclear export signal (NES) of VP19C is for the first time identified and mapped to amino acid residues 342 to 351. Furthermore, VP19C is demonstrated to shuttle between the nucleus and the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis. This makes VP19C the first herpesviral capsid protein with nucleocytoplasmic shuttling property and adds it to the list of HSV-1 nucleocytoplasmic shuttling proteins.  相似文献   

8.
Measles virus (MV) C protein is a small and basic non-structural protein, but its function is not well understood. We have found that a FLAG-tagged wild-type MV C protein expressed from cDNA was accumulated exclusively in the nucleus. To analyze the amino acid sequence important for the nuclear localization of C protein, a plasmid expressing C protein fused to the enhanced green fluorescent protein (EGFP) was generated. Mutation analysis revealed that (41)PPARKRRQ(48), belonging to the classical nuclear localization signal was important for nuclear localization. Analysis of the amino acid sequence of C protein revealed that it has a nuclear export signal (NES)-like sequence, (76)LEKAMTTLKL(85). Addition of the putative NES to the EGFP resulted in the translocation of EGFP to the cytoplasm. The Rev(1.4)-EGFP nuclear export assay showed that this putative NES has a CRM1-dependent NES activity. C-EGFP accumulated in HeLa nuclei could be translocated to NIH3T3 nuclei in heterokaryon assays. In MV-infected cells, C-EGFP was accumulated in the nuclei in early phase but in the cytoplasm in late phase. These results indicate that the putative NES is functional and that C protein has the ability to shuttle between the nucleus and the cytoplasm.  相似文献   

9.
Influenza A virus NS2 protein, also called nuclear export protein (NEP), is crucial for the nuclear export of viral ribonucleoproteins. However, the molecular mechanisms of NEP mediation in this process remain incompletely understood. A leucine-rich nuclear export signal (NES2) in NEP, located at the predicted N2 helix of the N-terminal domain, was identified in the present study. NES2 was demonstrated to be a transferable NES, with its nuclear export activity depending on the nuclear export receptor chromosome region maintenance 1 (CRM1)-mediated pathway. The interaction between NEP and CRM1 is coordinately regulated by both the previously reported NES (NES1) and now the new NES2. Deletion of the NES1 enhances the interaction between NEP and CRM1, and deletion of the NES1 and NES2 motifs completely abolishes this interaction. Moreover, NES2 interacts with CRM1 in the mammalian two-hybrid system. Mutant viruses containing NES2 alterations generated by reversed genetics exhibit reduced viral growth and delay in the nuclear export of viral ribonucleoproteins (vRNPs). The NES2 motif is highly conserved in the influenza A and B viruses. The results demonstrate that leucine-rich NES2 is involved in the nuclear export of vRNPs and contributes to the understanding of nucleocytoplasmic transport of influenza virus vRNPs.  相似文献   

10.
The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP-USP21 and, to a lesser extent, GFP-OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.  相似文献   

11.
Sphingosine kinase (SPHK) is an enzyme that phosphorylates sphingosine to form sphingosine 1-phosphate (S1P). Human SPHK1 (hSPHK1) was localized predominantly in the cytoplasm when transiently expressed in Cos7 cells. In this study, we have found two functional nuclear export signal (NES) sequences in the middle region of hSPHK1. Deletion and mutagenesis studies revealed that the cytoplasmic localization of SPHK1 depends on its nuclear export, directed by the NES. Furthermore, upon treatment with leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, a marked nuclear accumulation of hSPHK1 was observed, indicating that hSPHK1 shuttles between the cytoplasm and the nucleus. Our results provide the first evidence of the active nuclear export of SPHK1 and suggest it is mediated by a CRM1-dependent pathway.  相似文献   

12.
Borna disease virus (BDV) is a non-segmented, negative-sense RNA virus and has the property of persistently infecting the cell nucleus. BDV encodes a 10-kDa non-structural protein, X, which is a negative regulator of viral polymerase activity but is essential for virus propagation. Recently, we have demonstrated that interaction of X with the viral polymerase cofactor, phosphoprotein (P), facilitates translocation of P from the nucleus to the cytoplasm. However, the mechanism by which the intracellular localization of X is controlled remains unclear. In this report, we demonstrate that BDV X interacts with the 71 kDa molecular chaperon protein, Hsc70. Immunoprecipitation assays revealed that Hsc70 associates with the same region of X as P and, interestingly, that expression of P interferes competitively with the interaction between X and Hsc70. A heat shock experiment revealed that BDV X translocates into the nucleus, dependent upon the nuclear accumulation of Hsc70. Furthermore, we show that knockdown of Hsc70 by short interfering RNA decreases the nuclear localization of both X and P and markedly reduces the expression of viral genomic RNA in persistently infected cells. These data indicate that Hsc70 may be involved in viral replication by regulating the intracellular distribution of X.  相似文献   

13.
Deng W  Lin BY  Jin G  Wheeler CG  Ma T  Harper JW  Broker TR  Chow LT 《Journal of virology》2004,78(24):13954-13965
Cyclin-dependent kinases (CDKs) play key roles in eukaryotic DNA replication and cell cycle progression. Phosphorylation of components of the preinitiation complex activates replication and prevents reinitiation. One mechanism is mediated by nuclear export of critical proteins. Human papillomavirus (HPV) DNA replication requires cellular machinery in addition to the viral replicative DNA helicase E1 and origin recognition protein E2. E1 phosphorylation by cyclin/CDK is critical for efficient viral DNA replication. We now show that E1 is phosphorylated by CDKs in vivo and that phosphorylation regulates its nucleocytoplasmic localization. We identified a conserved regulatory region for localization which contains a dominant leucine-rich nuclear export sequence (NES), the previously defined cyclin binding motif, three serine residues that are CDK substrates, and a putative bipartite nuclear localization sequence. We show that E1 is exported from the nucleus by a CRM1-dependent mechanism unless the NES is inactivated by CDK phosphorylation. Replication activities of E1 phosphorylation site mutations are reduced and correlate inversely with their increased cytoplasmic localization. Nuclear localization and replication activities of most of these mutations are enhanced or restored by mutations in the NES. Collectively, our data demonstrate that CDK phosphorylation controls E1 nuclear localization to support viral DNA amplification. Thus, HPV adopts and adapts the cellular regulatory mechanism to complete its reproductive program.  相似文献   

14.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

15.
Control over the nuclear localization of nuclear factor kappaB/Rel proteins is accomplished in large part through association with members of the inhibitor of kappaB (IkappaB) protein family. For example, the well studied IkappaBalpha protein actively shuttles between the nucleus and the cytoplasm and both inhibits nuclear import and mediates nuclear export of NF-kappaB/Rel proteins. In contrast, the IkappaBbeta protein can inhibit nuclear import of NF-kappaB/Rel proteins but does not remove NF-kappaB/Rel proteins from the nucleus. To further understand how the IkappaB proteins control the nuclear-cytoplasmic distribution of NF-kappaB/Rel proteins, we have characterized the nuclear import and nuclear export functions of IkappaBepsilon. Our results indicate that the IkappaBepsilon protein, like the IkappaBalpha protein, actively shuttles between the nucleus and the cytoplasm. Similar to IkappaBalpha, nuclear import of IkappaBepsilon is mediated by its ankyrin repeat domain and is not blocked by the dominant-negative RanQ69L protein. However, the nuclear import function of the IkappaBepsilon ankyrin repeat domain is markedly less efficient than that of IkappaBalpha, with the result that nuclear shuttling of IkappaBepsilon between the nucleus and the cytoplasm is significantly slower than IkappaBalpha. Nuclear export of IkappaBepsilon is mediated by a short leucine-rich nuclear export sequence (NES)-like sequence ((343)VLLPFDDLKI(352)), located between amino acids 343 and 352. This NES-like sequence is required for RanGTP-dependent binding of IkappaBepsilon to CRM1. Nuclear accumulation of IkappaB(epsilon) is increased by either leptomycin B treatment or alanine substitutions within the IkappaBepsilon-derived NES. A functional NES is required for both efficient cytoplasmic retention and post-induction control of c-Rel by IkappaBepsilon, consistent with the notion that IkappaBepsilon-mediated nuclear export contributes to control over the nucleocytoplasmic distribution of NF-kappaB/Rel proteins.  相似文献   

16.
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.  相似文献   

17.
The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MMLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. In this report, we demonstrate that ZAP is predominantly localized in the cytoplasm at steady state but shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. Two nuclear localization sequences (NLS) and one nuclear export sequence (NES) were identified. One NLS was mapped to amino acids 68-RARVCRRK-75 and the other mapped to a region including amino acids K405 and K406. The NES was mapped to amino acids 284-LEDVSVDV-291. These findings help to understand why ZAP specifically prevents the accumulation of viral RNA in the cytoplasm. These findings also suggest possible functions of ZAP in the nucleus.  相似文献   

18.
19.
Many RNA viruses, which replicate predominantly in the cytoplasm, have nuclear components that contribute to their life cycle or pathogenesis. We investigated the intracellular localization of the multifunctional nonstructural protein 2 (nsP2) in mammalian cells infected with Venezuelan equine encephalitis virus (VEE), an important, naturally emerging zoonotic alphavirus. VEE nsP2 localizes to both the cytoplasm and the nucleus of mammalian cells in the context of infection and also when expressed alone. Through the analysis of a series of enhanced green fluorescent protein fusions, a segment of nsP2 that completely localizes to the nucleus of mammalian cells was identified. Within this region, mutation of the putative nuclear localization signal (NLS) PGKMV diminished, but did not obliterate, the ability of the protein to localize to the nucleus, suggesting that this sequence contributes to the nuclear localization of VEE nsP2. Furthermore, VEE nsP2 specifically interacted with the nuclear import protein karyopherin-alpha1 but not with karyopherin-alpha2, -3, or -4, suggesting that karyopherin-alpha1 transports nsP2 to the nucleus during infection. Additionally, a novel nuclear export signal (NES) was identified, which included residues L526 and L528 of VEE nsP2. Leptomycin B treatment resulted in nuclear accumulation of nsP2, demonstrating that nuclear export of nsP2 is mediated via the CRM1 nuclear export pathway. Disruption of either the NLS or the NES in nsP2 compromised essential viral functions. Taken together, these results establish the bidirectional transport of nsP2 across the nuclear membrane, suggesting that a critical function of nsP2 during infection involves its shuttling between the cytoplasm and the nucleus.  相似文献   

20.
Receptor-interacting protein 3 (RIP3), a member of the RIP Ser/Thr kinase family, has been characterized as a pro-apoptotic protein involved in the tumor necrosis factor receptor-1 signaling pathway. In this study, we have mapped a minimal region of RIP3 sufficient for apoptosis induction to a fragment of 31 amino acids in length. This minimal region also functions as an unconventional nuclear localization signal sufficient to confer the import of full-length RIP3 to the nucleus to trigger apoptosis, suggesting that RIP3 is able to play an apoptosis-inducing role in the nucleus. In addition, we have characterized two novel leucine-rich nuclear export signals (NESs) that are responsible for the nuclear export of RIP3 to the cytoplasm via a chromosome region maintenance 1 (CRM1)-dependent pathway and an extra leucine-rich NES in the N terminus of RIP3 that contributes to the cytoplasmic distribution in a CRM1-independent manner. Thus, we provide the first evidence that RIP3 acts a nucleocytoplasmic shuttling protein, which presents a possible link between death receptor signaling and nuclear apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号