首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel approach has been developed for direct injection of physiological fluids on an in-line extraction pre-column followed by column switching in order to introduce the adsorbed xenobiotic onto the analytical column. The physiological fluid is pre-treated with guanidinium solution in water (200 μl of fluid plus 300 μl of a reagent containing 8.05 M guanidinium and 1.02 M ammonium sulfate) in order to denature protein binding sites and to serve as a universal solvent for a divergent range of polar to non-polar xenobiotics in a hydrophilic medium. A 0.5 M ammonium sulfate solution (500 μl) is used as a pre- and post-flush reagent for the extraction pre-column (30 mm × 2.1 mm I.D.). The pre-flush reagent prepares the sorbent environment of the C18 pre-column for the hydrophobic retention of analytes. The post-flush reagent flushes non-retained sample proteins and salts to waste prior to switching the pre-column in-line with the analytical column. Universal chromatographic conditions for the analytical phase allows elution of a range of polar to non-polar xenobiotics within 20 min from an end-capped C8 silica anaytical column (250 mm × 4.6 mm I.D.). This is effected by a linear gradient from a binary system consisting of solvent A (0.05 M KH2PO4) and solvent B (acetonitrile—isopropanol, 80:20, v/v).  相似文献   

2.
A fully automated semi-microbore high performance liquid chromatographic (HPLC) method with column-switching using UV detection was developed for the determination of glimepiride from human plasma samples. Plasma sample (900 microl) was deproteinated and extracted with ethanol and acetonitrile. The extract (70 microl) was directly injected into a Capcell Pak MF Ph-1 pre-column where the primary separation occurred to remove proteins and retain drugs using a mixture of acetonitrile and 10mM phosphate buffer (pH 2.18) (20:80, v/v). The analytes were transferred from the pre-column to an intermediate column using a switching valve and then subsequently separated on an analytical column and monitored with UV detection at 228 nm. Glimepiride was eluted with retention time 34.9 min without interference of endogenous substance from plasma. The limit of quantification (LOQ) was 10 ng/ml for glimepiride. The calibration curves were linear over the concentration range of 10-400 ng/ml (r(2) = 0.9997). Moreover, inter- and intra-day precisions of the method were less than 15% and accuracies were higher than 99%. The developed method was successfully applied for the quantification of glimepiride in human plasma and was used to support a human pharmacokinetic study following a single oral administration of 2 mg glimepiride.  相似文献   

3.
A fully automated narrowbore high-performance liquid chromatography method with column switching was developed for the simultaneous determination of sildenafil and its active metabolite UK-103,320 in human plasma samples without pre-purification. Diluted plasma sample (100 μl) was directly introduced onto a Capcell Pak MF Ph-1 column (20×4 mm I.D.) where primary separation occurred to remove proteins and concentrate target substances using 15% acetonitrile in 20 mM phosphate solution (pH 7). The drug molecules eluted from the MF Ph-1 column were focused in an intermediate column (35×2 mm I.D.) by a valve switching step. The substances enriched in the intermediate column were eluted and separated on a phenyl-hexyl column (100×2 mm I.D.) using 36% acetonitrile in 10 mM phosphate solution (pH 4.5) when the valve status was switched back. The method showed excellent sensitivity (detection limit of 10 ng/ml), good precision (RSD≤2.3%) and accuracy (bias: ±2.0%) and speed (total analysis time 17 min). The response was linear (r2≥0.999) over the concentration range 10–1000 ng/ml.  相似文献   

4.
A simple and sensitive column-switching HPLC method was developed for the simultaneous determination of two furocoumarin compounds, byak-angelicin and oxypeucedanin hydrate, which are the main components of hot water extract of Angelica dahurica root (AE), in rat plasma. Plasma sample was simply deproteinated with perchloric acid. After centrifugation, the supernatant was injected into a column-switching HPLC system consisting of a clean-up column (Symmetry Shield RP 8, 20×3.9 mm I.D.) and analytical column (Symmetry C18, 75×4.6 mm I.D.) which were connected with a six-port switching valve. The flow-rate of the mobile phase (acetonitrile–water, 20:80) was maintained at 1 ml/min. Detection was carried out at wavelength 260 nm with a UV detector. The column temperature was maintained at 40°C. The calibration curves of byak-angelicin and oxypeucedanin hydrate were linear over the ranges 19.6 to 980 ng/ml (r2>0.997). The accuracy of these analytes was less than 4.4%. The intra- and inter-day relative standard deviations of byak-angelicin and oxypeucedanin hydrate were within 12.0% and 12.7%, respectively. The present method was applied for the analysis of plasma concentration from rats after administration of AE.  相似文献   

5.
A sensitive and specific high-performance liquid chromatographic (HPLC) assay has been developed for the quantification of 2-methoxyphenylmetyrapone (2-MPMP) and its seven potential metabolites in rat urine and whole blood. 2-MPMP, 2-hydroxyphenylmetyrapone and their N-oxides, together with 2-methoxyphenylmetyrapol, 2-hydroxyphenylmetyrapol and their N-oxides were separated on an Isco Spherisorb ODS-2 reversed-phase column (250×4.6 mm, I.D., 5 μm), with an Isco Spherisorb ODS-2 guard cartridge (10×4.6 mm I.D.). A gradient elution was employed using solvent system A (acetonitrile–water–triethylamine–acetic acid, 27.3:69.1:0.9:2.7%, v/v) and solvent system B (methanol), the gradient program being as follows: initial 0–4 min A:B=74:26; 4–10 min linear change to A:B=50:50; 10–16 min maintain A:B=50:50; 16 min return to initial conditions (A:B=74:26). Flow-rate was maintained at 1.25 ml/min, and the eluent monitored using a diode array multiple wavelength UV detector set at 260 nm. Most of the analytes were baseline resolved, and analysis of samples recovered from blood or urine (pH 12, 3×5 ml of dichloromethane, recovery 20–95%) revealed no interference from any co-extracted endogenous compounds in the biological matrices, except for 2-hydroxyphenylmetyrapol N-oxide (2-OHPMPOL-NO) at low concentrations. The calibrations (n=6) were linear (r≥0.996) for all analytes (0.5–100 μg/ml), with acceptable inter- and intra-day variability. Subsequent validation of the assay revealed acceptable precision, as measured by coefficient of variation (C.V.) at the low (0.5 mg/ml), medium (50 μg/ml) and high (100 μg/ml) concentrations. The limits of detection for 2-MPMP and their available potential metabolites, except 2-OHPMPOL-NO, in rat urine and blood were both 0.5 μg/ml, respectively.  相似文献   

6.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

7.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

8.
A study, using on-line column-switching high-performance liquid chromatography, evaluated two different extraction columns for the determination of flunitrazepam and its major metabolites: 7-aminoflunitrazepam, 7-acetamidoflunitrazepam and desmethylflunitrazepam. The procedure was based on the enrichment of benzodiazepines on the extraction column, followed by transfer of the compounds to the analytical column. The two extraction columns were compared: the first column was a BioTrap 500 MS (hydrophobic polymer), 20×4 mm I.D., and the second was a LiChrospher RP-18 ADS, 25×4 mm I.D. The analytical column used was a LiChrospher select B RP-8, 125×3 mm I.D. with 5 μm particle size. The extraction conditions for the two pre-concentration columns, such as extraction temperature, buffer concentration, buffer pH, acetonitrile percentage and flow-rate, were studied for the extraction from plasma of flunitrazepam and its metabolites mentioned above. The mobile phase of the analytical column was isocratic and composed of acetonitrile–20 mM phosphate buffer at pH 2.1 (35:65, v/v) and at a flow-rate of 0.3 ml/min.  相似文献   

9.
Determination of allantoin in bovine milk based on high-performance liquid chromatography (HPLC) is described. Following dilution and filtration, milk samples were analysed directly. Separation and quantification of allantoin was achieved using a Spherisorb 5 NH2 column (250×4.6 mm ID), acetonitrile–water (90:10, v/v) mobile phase at a flow-rate of 2.0 ml min−1, temperature 20°C and monitoring the effluent at 214 nm. Total analysis time was 10 min. Recovery of allantoin added to milk was 97 (±3.7, n=30)%. Lowest detectable concentration was 1 μmol l−1. Within-day and between-day variability were less than 3%. Advantages of improved retention and separation of allantoin, and less complicated sample preparation exist over current methods.  相似文献   

10.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of a new oral thrombin inhibitor (compound I) in the blood of rats and dogs. The analyte was deproteinized with a 1.5 volume of methanol and a 0.5 volume of 10% zinc sulfate, and the supernatant was injected into a 5-μm Capcell Pak C18 column (150×4.6 mm I.D.). The mobile phase was a mixture of acetonitrile and 0.2% triethylamine of pH 2.3 (31:69, v/v) with a flow-rate of 1.0 ml/min at UV 231 nm. The retention time of compound I was approximately 9.3 min. The calibration curve was linear over the concentration range of 0.05–100 mg/l for rat blood (r2>0.9995, n=6) and dog blood (r2>0.9993, n=6). The limit of quantitation was 0.05 mg/l for both bloods using a 100-μl sample. For the 5 concentrations (0.05, 0.1, 1, 10, and 100 mg/l), the within-day recovery (n=4) and precision (n=4) were 98.1–104.1% and 1.5–6.8% for rat blood and 95.4–105.7% and 1.4–5.3% for dog blood, respectively. The between-day recovery (n=6) and precision (n=6) were 99.8–105.3% and 3.7–12.6% for rat blood and 87.5–107.1% and 2.9–15.3% for dog blood, respectively. The absolute recoveries were 82.4–93.3%. No interferences from endogenous substances were observed. In conclusion, the presented simple, sensitive, and reproducible HPLC method proved and was used successfully for the determination of compound I in the preclinical pharmacokinetics.  相似文献   

11.
In order to clarify arginine (Arg) metabolism by rumen microorganisms and by the tissues of ruminant animals, a convenient method for the simultaneous determination of Arg, citrulline (Cit), ornithine (Orn), proline (Pro) and 5-aminovaleric acid (5AV), and 4-aminobutyric acid (4AB) and lysine (Lys), incidentally, in goat rumen fluid was established by reversed-phase high-performance liquid chromatography (RP-HPLC). The separation was carried out by stepwise isocratic elution with two mobile phases (solvent A and solvent B) on a LiChrospher 100 RP-18 column (150×4.6 mm I.D., 5 μm particle size) equipped with a guard column (4.0×4 mm, 5 μm particle size). Solvent A is composed of acetonitrile–sodium citrate buffer (pH 7.2) (15:85, v/v) containing tetrahydrofuran (5 ml/100 ml), with solvent B comprising acetonitrile–sodium citrate buffer (pH 5.4) (40:60, v/v). Five compounds (Cit, Arg, Pro, 4AB and 5AV) were separated within 33 min in solvent A and the other two (Orn and Lys) in solvent B. Solvent A was automatically switched to solvent B with the help of a valve controller. Complete separation needs 62 min after sample injection in a single chromatogram. Samples were derivatized with 9-fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and detected on a fluorescence detector at excitation and emission wavelengths of 263 and 611 nm, respectively. The minimum detectable concentrations (μM) (signal-to-noise ratio, S/N 3:1) of these compounds were: 0.65 for Cit, 0.65 for Arg, 1.9 for Pro, 1.3 for 4AB, 1.9 for 5AV, 0.12 for Orn and 0.48 for Lys. When applied to rumen fluid from goats, recoveries of all compounds added to the rumen fluid were 96.6–100.6% for an intra-day study and 93.9–99.4% for inter-day (5 days) studies. The average contents of Orn, 5AV and Lys in the rumen fluid of three goats before morning feeding were 7.3, 13.5 and 3.6 μM, but Cit, Arg, Pro, and 4AB were not found, although all these four compounds were detected 1 h after feeding. Pro (390 μM) and 5AV (497.6 μM) were highest 1 h after feeding and then decreased. Orn levels before morning feeding were most similar to those after feeding.  相似文献   

12.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of LB71350 in the plasma of dogs. The analyte was deproteinized with 1.5 volumes of methanol and 0.5 volumes of 10% zinc sulfate, and the supernatant was injected into a 5-μm Capcell Pak C18 column (150×4.6 mm I.D.). The mobile phase was a stepwise gradient mixture of acetonitrile and 0.2% triethylamine–HCl with a flow-rate of 1 ml/min and detection at UV 245 nm. The proportion of acetonitrile was kept at 52% for the first 6 min, increased to 100% for the next 0.5 min, kept at 100% for the next 2 min, decreased to 52% for the next 0.5 min, and finally kept at 52% for the next 7 min. The retention time of LB71350 was 6.9 min. The calibration was linear over the concentration range of 0.1–100 mg/l for dog plasma (r>0.997) and the limit of quantitation was 0.1 mg/l using 0.1 ml plasma. The quality control samples were reproducible with acceptable accuracy and precision at 0.1, 1, 10 and 100 mg/l concentrations. The within-day recovery (n=5) was 90.2–93.9%, the between-day recovery (n=5) was 89.5–93.5%, and the absolute between-day recovery (n=5) was 77–81%. The within-day precision (n=5) and between-day precision (n=5) were 2.59–5.82% and 3.17–4.55%, respectively. No interferences from endogenous substances were observed. Taken together, the above HPLC assay method by deproteinization and UV detection was suitable for the determination of LB71350 in the preclinical pharmacokinetics.  相似文献   

13.
A rapid high-performance liquid chromatographic method for the quantitation of citalopram in human plasma is presented. The sample preparation involved liquid–liquid extraction of citalopram with hexane–isoamyl alcohol (98:2 v/v) and back-extraction of the drug to 0.02 M hydrochloric acid. Liquid chromatography was performed on a cyano column (45×4.6 mm, 5 μm particles), the mobile phase consisted of an acetonitrile–phosphate buffer, pH 6.0 (50:50, v/v). The run time was 2.6 min. The fluorimetric detector was set at an excitation wavelength of 236 nm and an emission wavelength of 306 nm. Verapamil was used as the internal standard. The limit of quantitation was 0.96 ng/ml using 1 ml of plasma. Within- and between-day precision expressed by relative standard deviation was less than 7% and inaccuracy did not exceed 6%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

14.
We report a reversed-phase high-performance liquid chromatography method which resolves 13 identified carotenoids and nine unknown carotenoids from human plasma. A Nucleosil C18 column and a Vydac C18 column in series are used with an isocratic solvent system of acetonitrile–methanol containing 50 mM acetate ammonium–dichloromethane–water (70:15:10:5, v/v/v/v) as mobile phase at a flow-rate of 2 ml/min. The intra-day (4.5–8.3%) and inter-day (1.3–12.7%) coefficients of variation are suitable for routine clinical determinations.  相似文献   

15.
A reversed-phase high-performance liquid chromatographic–electrochemical assay was developed and validated for the quantification of olanzapine in human breast milk. The assay involved a solid-phase extraction (SPE) of olanzapine and its internal standard on a Bond Elut Certify LRC mixed-mode cartridge. After conditioning of the SPE cartridge, human milk (1 ml) was passed through the cartridge. The cartridge was washed with five separate washing steps to remove endogenous compounds, and the analytes were eluted with ethyl acetate–ammonium hydroxide (98:2, v/v) solution. The eluate was evaporated to dryness (gentle stream of nitrogen at 40°C), and the residue was dissolved in mobile phase. The extract was injected onto a YMC basic column (150 mm×4.6 mm I.D., 5 μm particle size) at a flow-rate of 1 ml/min. A mixture of 75 mM phosphate buffer, pH 7.0–acetonitrile–methanol (48:26:26, v/v/v) was used as the mobile phase. Standard curves with a lower limit of quantitation of 0.25 ng/ml of olanzapine were linear (r2≥0.9992) over a range of 0.25–100 ng/ml. Based on the analysis of quality control (QC) samples, the average inter-day accuracy (RE) was 99.0% with an average precision (CV) of 6.64% over the entire range. The stability of olanzapine in human milk was established after three freeze–thaw–heat cycles and storage at −70°C for 10 months. The validated method was used to measure olanzapine concentrations in human milk during a clinical trial.  相似文献   

16.
A sensitive and selective reversed-phase LC–ESI-MS method to quantitate perifosine in human plasma was developed and validated. Sample preparation utilized simple acetonitrile precipitation without an evaporation step. With a Develosil UG-30 column (10×4 mm I.D.), perifosine and the internal standard hexadecylphosphocholine were baseline separated at retention times of 2.2 and 1.1 min, respectively. The mobile phase consisted of eluent A, 95% 9 mM ammonium formate (pH 8) in acetonitrile–eluent B, 95% acetonitrile in 9 mM ammonium formate (pH 8) (A–B, 40:60, v/v), and the flow-rate was 0.5 ml/min. The detection utilized selected ion monitoring in the positive-mode at m/z 462.4 and 408.4 for the protonated molecular ions of perifosine and the internal standard, respectively. The lower limit of quantitation of perifosine was 4 ng/ml in human plasma, and good linearity was observed in the 4–2000 ng/ml range fitted by linear regression with 1/x weight. The total LC–MS run time was 5 min. The validated LC–MS assay was applied to measure perifosine plasma concentrations from patients enrolled on a phase I clinical trial for pharmacokinetic/pharmacodynamic analyses.  相似文献   

17.
An improved method suitable for the determination of 8-methoxypsoralen in the range 50–1500 ng/ml in the plasma of psoriatic patients undergoing PUVA (psoralens and long-wave ultraviolet light) therapy is proposed. A 5-ml aliquot of plasma containing sodium citrate as anticoagulant was centrifuged, griseofulvin was added as internal standard and the sample was denatured with acetonitrile. The supernatant was applied to C18 cartridges and 8-methoxypsoralen was eluted with methanol. The evaporated eluate was reconstituted in the mobile phase for high-performance liquid chromatography (HPLC) and applied to the HPLC column: mobile phase, acetonitrile—0.01 M phosphoric acid (34:66); flow-rate, 1 ml/min; temperature, 40°C; column, Spherisorb 5 ODS, 100 mm × 4.6 mm I.D., 5 μm particle size; UV detection at 248 nm; detection limit, 15 ng/ml of plasma.  相似文献   

18.
An original method based upon high-performance liquid chromatography coupled to electrospray ionization mass spectrometry has been developed for corticosterone (B) quantification in human serum. After extraction by diethyl ether using triamcinolone (T) as an internal standard, solutes are separated on a C18 microbore column (250×1.0 mm, I.D.), using acetonitrile–water–formic acid (40:59.9:0.1, v/v/v) as the mobile phase (flow-rate 40 μl/min). Detection is performed on an API 1 single quadrupole mass spectrometer equipped with a ESI interface and operated in positive ionization mode. Corticosterone quantifications were realized by computing peak area ratios (B/T) of the serum extracts analyzed in SIM mode (m/z 347 and m/z 395 for B and T, respectively), and comparing them with the calibration curve (r=0.998).  相似文献   

19.
20.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号