首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydantoin racemase enzyme together with a stereoselective hydantoinase and a stereospecific D-carbamoylase guarantee the total conversion from D,L-5-monosubstituted hydantoins with a low velocity of racemization to optically pure D-amino acids. In this work we have cloned and expressed the hydantoin racemase gene from two strains of Agrobacterium tumefaciens, C58 and LBA4404, in Escherichia coli BL21. The recombinant protein was purified in a one-step procedure by using immobilized cobalt affinity chromatography and showed an apparent molecular mass of 32,000 Da in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 100,000 Da, suggesting that the native enzyme is a tetramer. The optimal conditions for hydantoin racemase activity were pH 7.5 and 55 degrees C with L-5-ethylhydantoin as substrate. Enzyme activity was slightly affected by the addition of Ni(2+) and Co(2+) and strongly inhibited by Cu(2+) and Hg(2+). No effect on enzyme activity was detected with Mn(2+), EDTA, or DTT. Kinetic studies showed the preference of the enzyme for hydantoins with short rather than long aliphatic side chains or hydantoins with aromatic rings.  相似文献   

2.
The hydantoin racemase gene of Pseudomonas sp. strain NS671 had been cloned and expressed in Escherichia coli. Hydantoin racemase was purified from the cell extract of the E. coli strain by phenyl-Sepharose, DEAE-Sephacel, and Sephadex G-200 chromatographies. The purified enzyme had an apparent molecular mass of 32 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By gel filtration, a molecular mass of about 190 kDa was found, suggesting that the native enzyme is a hexamer. The optimal conditions for hydantoin racemase activity were pH 9.5 and a temperature of 45 degrees C. The enzyme activity was slightly stimulated by the addition of not only Mn2+ or Co2+ but also metal-chelating agents, indicating that the enzyme is not a metalloenzyme. On the other hand, Cu2+ and Zn2+ strongly inhibited the enzyme activity. Kinetic studies showed substrate inhibition, and the Vmax values for D- and L-5-(2-methylthioethyl)hydantoin were 35.2 and 79.0 mumol/min/mg of protein, respectively. The purified enzyme did not racemize 5-isopropylhydantoin, whereas the cells of E. coli expressing the enzyme are capable of racemizing it. After incubation of the purified enzyme with 5-isopropylhydantoin, the enzyme no longer showed 5-(2-methylthioethyl)hydantoin-racemizing activity. However, in the presence of 5-(2-methylthioethyl)hydantoin, the purified enzyme racemized 5-isopropylhydantoin completely, suggesting that 5-(2-methylthioethyl)hydantoin protects the enzyme from inactivation by 5-isopropylhydratoin. Thus, we examined the protective effect of various compounds and found that divalent-sulfur-containing compounds (R-S-R' and R-SH) have this protective effect.  相似文献   

3.
In Arthrobacter aurescens DSM 3747 three enzymes are involved in the complete conversion of slowly racemizing 5'-monosubstituted D,L-hydantoins to L-amino acids, a stereoselective hydantoinase, a stereospecific L-N-carbamoylase and a hydantoin racemase. The gene encoding the hydantoin racemase, designated hyuA, was identified upstream of the previously described L-N-carbamoylase gene in the plasmid pAW16 containing genomic DNA of A. aurescens. The gene hyuA which encodes a polypeptide of 25.1 kDa, was expressed in Escherichia coli and the recombinant protein purified to homogeneity and further characterized. The optimal condition for racemase activity were pH 8.5 and 55 degrees C with L-5-benzylhydantoin as substrate. The enzyme was completely inhibited by HgCL2 and iodoacetamide and stimulated by addition of dithiothreitol. No effect on enzyme activity was seen with EDTA. The enzyme showed preference for hydantoins with arylalkyl side chains. Kinetic studies revealed substrate inhibition towards the aliphatic substrate L-5-methylthioethylhydantoin. Enzymatic racemization of D-5-indolylmethylenehydantoin in D2O and NMR analysis showed that the hydrogen at the chiral center of the hydantoin is exchanged against solvent deuterium during the racemization.  相似文献   

4.
A reaction system was developed for the production of D-amino acids from D,L-5-monosubstituted hydantoins with a very slow rate of spontaneous racemization. For this purpose the D-hydantoinase and D-carbamoylase from Agrobacterium radiobacter NRRL B11291 were cloned in separate plasmids and expressed in Escherichia coli. The third enzyme, hydantoin racemase, was cloned from Agrobacterium tumefaciens C58. The hydantoin racemase amino acid sequence was significantly similar to those previously described. A reaction system consisting of recombinant Escherichia coli whole cell biocatalysts containing separately expressed D-hydantoinase, D-carbamoylase, and hydantoin recemase showed high substrate specificity and was effective toward both aliphatic and aromatic D,L-5-monosubstituted hydantoins. After optimizing reaction conditions (pH 8 and 50 degrees C), 100% conversion of D,L-5-(2-methylthioethyl)-hydantoin (15 mM) into D-methionine was obtained in 30 min.  相似文献   

5.
A hydantoin racemase that catalyzed the racemization of 5-benzyl-hydantoin was detected in a cell-free extract of Microbacterium liquefaciens AJ 3912, a bacterial strain known to produce L-amino acids from their corresponding DL-5-substituted-hydantoins. This hydantoin racemase was purified 658-fold to electrophoretic homogeneity by serial chromatography. The N-terminal amino acid sequence of the enzyme showed homology with known hydantoin racemases from other microorganisms. The apparent molecular mass of the purified enzyme was 27 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 117 kDa on gel-filtration in the purification conditions, indicating a homotetrameric structure. The purified enzyme exhibited optimal activity at pH 8.2 and 55 degrees C, and showed a chiral preference for L-5-benzyl- rather than D-5-benzyl-hydantoin.  相似文献   

6.
Hydantoin racemase from Sinorhizobium meliloti was functionally expressed in Escherichia coli. The native form of the enzyme was a homotetramer with a molecular mass of 100 kDa. The optimum temperature and pH for the enzyme were 40 degrees C and 8.5, respectively. The enzyme showed a slight preference for hydantoins with short rather than long aliphatic side chains or those with aromatic rings. Substrates, which showed no detectable activity toward the enzyme, were found to exhibit competitive inhibition.  相似文献   

7.
Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2.  相似文献   

8.
Hydantoin racemase from Sinorhizobium meliloti was functionally expressed in Escherichia coli. The native form of the enzyme was a homotetramer with a molecular mass of 100 kDa. The optimum temperature and pH for the enzyme were 40°C and 8.5, respectively. The enzyme showed a slight preference for hydantoins with short rather than long aliphatic side chains or those with aromatic rings. Substrates, which showed no detectable activity toward the enzyme, were found to exhibit competitive inhibition.  相似文献   

9.
微生物乙内酰脲酶及其研究进展   总被引:7,自引:3,他引:7  
乙内酰脲酶是广泛分布在微生物中的一类可降解乙内酰脲酶类化合物的酶系 ,包括乙内酰脲水解酶、N-氨甲酰氨基酸水解酶及乙内酰脲消旋酶。微生物的乙内酰脲酶在结构与组成、立体选择性、底物专一性、反应条件和作用机制等方面有所不同 ,在各种 L-及 D-型氨基酸的酶法生产中具有良好的应用前景。本文对乙内酰脲酶研究及应用的一般情况作了概述 ,并讨论了有关乙内酰脲酶研究的主要研究进展  相似文献   

10.
Hydantoin racemase enzyme together with a stereoselective hydantoinase and a stereospecific d-carbamoylase guarantee the total conversion from d,l-5-monosubstituted hydantoins with a low velocity of racemization, to optically pure d-amino acids. Hydantoin racemase from Sinorhizobium meliloti was expressed in Escherichia coli. Calorimetric and fluorescence experiments were then carried out to obtain the thermodynamic binding parameters, deltaG, deltaH and DeltaS for the inhibitors L- and D-5-methylthioethyl-hydantoin. The number of active sites is four per enzyme molecule (one per monomer), and the binding of the inhibitor is entropically and enthalpically favoured under the experimental conditions studied. In order to obtain information about amino acids involved in the active site, four different mutants were developed in which cysteines 76 and 181 were mutated to Alanine and Serine. Their behaviour shows that these cysteines are essential for enzyme activity, but only cysteine 76 affects the binding to these inhibitors.  相似文献   

11.
Hydantoin racemase enzyme plays a crucial role in the reaction cascade known as "hydantoinase process." In conjunction with a stereoselective hydantoinase and a stereospecific carbamoylase, it allows the total conversion from D,L-5-monosubstituted hydantoins, with a low rate of racemization, to optically pure D- or L-amino acids. Residues Cys76 and Cys181 belonging to hydantoin racemase from Sinorhizobium meliloti (SmeHyuA) have been proved to be involved in catalysis. Here, we report biophysical data of SmeHyuA Cys76 and Cys181 to alanine mutants, which point toward a two-base mechanism for the racemization of 5-monosubstituted hydantoins. The secondary and the tertiary structure of the mutants were not significantly affected, as shown by circular dichroism. Calorimetric and fluorescence experiments have shown that Cys76 is responsible for recognition and proton retrieval of D-isomers, while Cys181 is responsible for L-isomer recognition and racemization. This recognition process is further supported by measurements of protein stability followed by chemical denaturation in the presence of the corresponding compound.  相似文献   

12.
13.
Bifidobacterium bifidum is a useful probiotic agent exhibiting health-promoting properties and contains d-aspartate as an essential component of the cross-linker moiety in the peptidoglycan. To help understand D-aspartate biosynthesis in B. bifidum NBRC 14252, aspartate racemase, which catalyzes the racemization of D- and L-aspartate, was purified to homogeneity and characterized. The enzyme was a monomer with a molecular mass of 27 kDa. This is the first report showing the presence of a monomeric aspartate racemase. Its enzymologic properties, such as its lack of cofactor requirement and susceptibility to thiol-modifying reagents in catalysis, were similar to those of the dimeric aspartate racemase from Streptococcus thermophilus. The monomeric enzyme, however, showed a novel characteristic, namely, that its thermal stability significantly increased in the presence of aspartate, especially the D-enantiomer. The gene encoding the monomeric aspartate racemase was cloned and overexpressed in Escherichia coli cells. The nucleotide sequence of the aspartate racemase gene encoded a peptide containing 241 amino acids with a calculated molecular mass of 26 784 Da. The recombinant enzyme was purified to homogeneity and its properties were almost the same as those of the B. bifidum enzyme.  相似文献   

14.
15.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

16.
We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5′-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on l-cysteic acid and l-cysteine sulfinic acid in addition to d- and l-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. d-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.  相似文献   

17.
DNA fragments containing the genes involved in the conversion of 5-substituted hydantoins to their corresponding L-amino acids have been cloned from the 172-kb native plasmid (pHN671) of Pseudomonas sp. strain NS671. The largest recombinant plasmid, designated pHPB14, encoded the ability to convert D-5-substituted hydantoins to the corresponding L-amino acids, whereas the smallest one, designated pHPB12, encoded the ability to convert them to their corresponding N-carbamyl-D-amino acids. Restriction analysis suggested that the inserts of both recombinant plasmids are derived from the identical portion in pHN671 and that the insert of pHPB14, compared with that of pHPB12, has an extra 5.3 kb in length. DNA sequencing revealed that pHPB14 contains two additional complete open reading frames, designated ORF5 and hyuE. Analysis of deletion derivatives of pHPB14 indicated that hyuE is required for the ability to produce L-amino acids from the corresponding D-5-substituted hydantoins, but ORF5 is not. Cells of Escherichia coli transformed with a plasmid containing hyuE were capable of racemizing different 5-substituted hydantoins, indicating that hyuE is a gene encoding a hydantoin racemase.  相似文献   

18.
N-Succinylamino acid racemase (NSAAR) with N-acylamino acid racemase (NAAAR) activity together with a d- or l-aminoacylase allows the total transformation of N-acetylamino acid racemic mixtures into optically pure d- or l-amino acids, respectively. In this work we have cloned and expressed the N-succinylamino acid racemase gene from the thermophilic Bacillus-related species Geobacillus kaustophilus CECT4264 in Escherichia coli BL21 (DE3). G. kaustophilus NSAAR (GkNSAAR) was purified in a one-step procedure by immobilized cobalt affinity chromatography and showed an apparent molecular mass of 43 kDa in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 150 kDa, suggesting that the native enzyme is a homotetramer. Optimum reaction conditions for the purified enzyme were 55 °C and pH 8.0, using N-acetyl-d-methionine as substrate. GkNSAAR showed a gradual loss of activity at preincubation temperatures over 60 °C, suggesting that it is thermostable. As activity was greatly enhanced by Co2+, Mn2+ and Ni2+ but inhibited by metal-chelating agents, it is considered a metalloenzyme. The Co2+-dependent activity profile of the enzyme was studied with no detectable inhibition at higher metal ion concentrations. GkNSAAR showed activity towards both aliphatic and aromatic N-acetylamino acids such as N-acetyl-methionine and N-acetyl-phenylalanine, respectively, with kcat/Km values ranging from 1 × 103 to 9 × 103 s?1 M?1. Kinetic parameters were better for N-acetyl-d-amino acids than for N-acetyl-l-specific ones.  相似文献   

19.
Alanine racemase [EC 5.1.1.1], which catalyzes the interconversion between D- and L-alanine, was purified to homogeneity from the muscle of black tiger prawn Penaeus monodon. The isolated enzyme had a molecular mass of 44 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 90 kDa on gel filtration, indicating a dimeric nature of the enzyme. The enzyme was highly specific to D- and L-alanine and did not catalyze the racemization of other amino acids. K(m) values toward both D- and L-alanine were almost equal and considerably high compared with those of bacterial enzymes. The purified enzyme retained its activity in the absence of pyridoxal 5'-phosphate as a cofactor but carbonyl reagents inhibited the activity, suggesting the tightly binding of the cofactor to the enzyme protein. Several partial amino acid sequences of peptide fragments of the purified enzyme showed positive homologies from 52 to 76% with bacterial counterparts and a catalytic tyrosine residue of the bacterial enzyme was also retained in the prawn one, indicating alanine racemase gene is well conserved from bacteria to invertebrates.  相似文献   

20.
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号