首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extracellular matrix of cultured human lung fibroblasts contains one major heparan sulfate proteoglycan. This proteoglycan contains a 400-kDa core protein and is structurally and immunochemically identical or closely related to the heparan sulfate proteoglycans that occur in basement membranes. Because heparitinase does not release the core protein from the matrix of cultured cells, we investigated the binding interactions of this heparan sulfate proteoglycan with other components of the fibroblast extracellular matrix. Both the intact proteoglycan and the heparitinase-resistant core protein were found to bind to fibronectin. The binding of 125I-labeled core protein to immobilized fibronectin was inhibited by soluble fibronectin and by soluble cold core protein but not by albumin or gelatin. A Scatchard plot indicates a Kd of about 2 x 10(-9) M. Binding of the core protein was also inhibited by high concentrations of heparin, heparan sulfate, or chrondroitin sulfate and was sensitive to high salt concentrations. Thermolysin fragmentation of the 125I-labeled proteoglycan yielded glycosamino-glycan-free core protein fragments of approximately 110 and 62 kDa which bound to both fibronectin and heparin columns. The core protein-binding capacity of fibronectin was very sensitive to proteolysis. Analysis of thermolytic and alpha-chymotryptic fragments of fibronectin showed binding of the intact proteoglycan and of its isolated core protein to a protease-sensitive fragment of 56 kDa which carried the gelatin-binding domain of fibronectin and to a protease-sensitive heparin-binding fragment of 140 kDa. Based on the NH2-terminal amino acid sequence analyses of the 56- and 140-kDa fragments, the core protein-binding domain in fibronectin was tentatively mapped in the area of overlap of the two fragments, carboxyl-terminally from the gelatin-binding domain, possibly in the second type III repeat of fibronectin. These data document a specific and high affinity interaction between fibronectin and the core protein of the matrix heparan sulfate proteoglycan which may anchor the proteoglycan in the matrix.  相似文献   

2.
We provide direct evidence for the presence of unsulfated, but fully elongated heparan glycosaminoglycans covalently linked to the protein core of a heparan sulfate proteoglycan synthesized by human colon carcinoma cells. Chemical and enzymatic studies revealed that a significant proportion of these chains contained glucuronic acid and N-acetylated glucosamine moieties, consistent with N-acetylheparosan, an established precursor of heparin and heparan sulfate. The presence of unsulfated chains was not dependent upon the exogenous supply of sulfate since their synthesis, structure, or relative amount did not vary with low exogenous sulfate concentrations. Culture in sulfate-free medium also failed to generate undersulfated heparan sulfate-proteoglycan, but revealed an endogenous source of sulfate which was primarily derived from the catabolism of the sulfur-containing amino acids methionine and cysteine. Furthermore, the presence of unsulfated chains was not due to a defect in the sulfation process because pulse-chase experiments showed that they could be converted into the fully sulfated chains. However, their formation was inhibited by limiting the endogenous supply of hexosamine. The results also indicated the coexistence of the unsulfated and sulfated chains on the same protein core and further suggested that the sulfation of heparan sulfate may occur as an all or nothing phenomenon. Taken together, the results support the current biosynthetic model developed for the heparin proteoglycan in which unsulfated glycosaminoglycans are first elongated on the protein core, and subsequently modified and sulfated. These data provide the first evidence for the presence of such an unsulfated precursor in an intact cellular system.  相似文献   

3.
The potent oxidants hypochlorous acid (HOCl) and hypobromous acid (HOBr) are produced extracellularly by myeloperoxidase, following release of this enzyme from activated leukocytes. The subendothelial extracellular matrix is a key site for deposition of myeloperoxidase and damage by myeloperoxidase-derived oxidants, with this damage implicated in the impairment of vascular cell function during acute inflammatory responses and chronic inflammatory diseases such as atherosclerosis. The heparan sulfate proteoglycan perlecan, a key component of the subendothelial extracellular matrix, regulates important cellular processes and is a potential target for HOCl and HOBr. It is shown here that perlecan binds myeloperoxidase via its heparan sulfate side chains and that this enhances oxidative damage by myeloperoxidase-derived HOCl and HOBr. This damage involved selective degradation of the perlecan protein core without detectable alteration of its heparan sulfate side chains, despite the presence of reactive GlcNH2 residing within this glycosaminoglycan. Modification of the protein core by HOCl and HOBr (measured by loss of immunological recognition of native protein epitopes and the appearance of oxidatively-modified protein epitopes) was associated with an impairment of its ability to support endothelial cell adhesion, with this observed at a pathologically-achievable oxidant dose of 425 nmol oxidant/mg protein. In contrast, the heparan sulfate chains of HOCl/HOBr-modified perlecan retained their ability to bind FGF-2 and collagen V and were able to promote FGF-2-dependent cellular proliferation. Collectively, these data highlight the potential role of perlecan oxidation, and consequent deregulation of cell function, in vascular injuries by myeloperoxidase-derived HOCl and HOBr.  相似文献   

4.
Rats were injected with 35SO4 and after 2 h their livers were removed and used to prepare a detergent-insoluble cytoskeleton fraction. Spectrin, cytokeratins, and actin were major protein components of the isolated cytoskeletons. The cytoskeleton fraction accounted for approximately 14% of the total trichloroacetic acid-insoluble 35SO4 radioactivity incorporated into the liver. The cytoskeleton-associated radioactivity was present in a single species of macromolecule. This molecule was not present to a significant extent in the detergent-soluble fraction containing the cell supernatant and dissolved membrane proteins. Further characterization revealed the cytoskeleton-associated molecule was a heparan sulfate proteoglycan: it was eluted from a Sepharose CL-4B column under denaturing conditions at Kav = 0.4; following mild alkaline hydrolysis the radioactivity was eluted at a Kav = 0.7; when this material was subjected to nitrous acid hydrolysis all of the radioactivity was eluted near the column included volume. The isolated cytoskeletons contained attached nuclei. Pure nuclei isolated without associated cytoskeletal elements contained less than 1% of the total liver trichloroacetic acid-insoluble 35SO4 radioactivity and no detectable heparan sulfate proteoglycan. These results suggested that other matrix proteins might be associated with the liver cytoskeleton. When the subcellular distribution of laminin was monitored by immunostaining proteins transferred to nitrocellulose, laminin was detected exclusively in the cytoskeleton fraction. These results provide evidence for an association between extracellular connective tissue proteins and intracellular structural proteins.  相似文献   

5.
A heparan sulfate proteoglycan from bovine lung gas-exchange tissue was isolated by extraction of the tissue with 4.0 M guanidine HCl in the presence of multiple protein inhibitors. The proteoglycan was purified by precipitation with cetylpyridinium chloride in 0.5 M KCl followed by CsCl isopycnic centrifugation (po = 1.45) in 4.0 M guanidine/HCl. Further purification was achieved by gel filtration on Sepharose CL-2B and by chromatography in DEAE-Sepharose CL-6B column. The proteoglycan had 14.9% protein and 22.4% uronate. Heparan sulfate chains from the proteoglycan were isolated after beta-elimination. Fractionation of heparan sulfate chains was achieved on Dowex-1 Cl- column, eluting with a stepwise increase in the concentration of NaCl, 1.0 to 2.0 M with 0.2 M increments. Of the total heparan sulfate recovered from the column, about 10% eluted by 1.2 M NaCl, 68% by 1.4 M NaCl, 18% by 1.6 M NaCl and 4% by 1.8 M NaCl. The fractions varied in their total and N-sulfate ester contents and iduronic acid to glucuronic acid ratios. The fraction that eluted from the Dowex-1 Cl- column at 1.6 M NaCl had the highest molecular weight, 37000, and the fraction that eluted at 1.8 M NaCl had the lowest molecular weight, 12000, as determined by gel filtration method, and the greatest sulfate content. The core protein, obtained by digestion of proteoglycan by heparan sulfate lyase, showed mostly a single band in SDS-polyacrylamide gel electrophoresis. The observations indicate a heterogeneity of the composition of heparan sulfate chains in the proteoglycan. This heterogeneity likely contributes to variations in biologic properties of different heparan sulfate proteoglycan preparations.  相似文献   

6.
Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.  相似文献   

7.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

8.
9.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

10.
Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.  相似文献   

11.
We demonstrate that the cell surface heparan sulfate proteoglycan of human colon carcinoma cells has an affinity for a hydrophobic matrix. This property is mediated by sequences in the core protein, since papain-or alkaline borohydride-released heparan sulfate chains do not bind to the matrix. Trypsin releases a [3H]leucine-rich, unsulfated, hydrophobic peptide, with Mr approximately 5000. This domain is present in neither the proteoglycan released into the medium nor in the intracellular degradation products. It is proposed that this peptide may represent the portion of the core protein intercalated into the plasma membrane.  相似文献   

12.
We have studied the extractability of type IV collagen, laminin, and heparan sulfate proteoglycan from EHS tumor tissue growth in normal and lathyritic animals. Laminin and heparan sulfate proteoglycan were readily extracted with chaotropic solvents from both normal and lathyritic tissue. The collagenous component was only solubilized from lathyritic tissue in the presence of a reducing agent. These results indicate that lysine-derived cross-links and disulfide bonds stabilize the collagenous component in the matrix but not the laminin or the heparan sulfate proteoglycan. The majority of the collagen present in the extracts had a native triple helix based upon the pattern of peptides resistant to pepsin digestion and visualization in the electron microscope by the rotary shadow technique. This protein was composed of chains (Mr 185000 and 170000) identical in migration to the chains of newly synthesized type IV procollagen. This finding confirms earlier work that indicates that the biosynthetic form, type IV procollagen, is incorporated as such in the basement membrane matrix. Material with smaller chains (Mr 160000 and 140000) appeared on storage in acetic acid solutions. These results indicate that the lower molecular weight collagen in acid extracts of basement membrane arises artifactually due to an endogenous acid-active protease.  相似文献   

13.
14.
Cell surface heparan sulfate proteoglycan and the neoplastic phenotype   总被引:3,自引:0,他引:3  
Cell surface proteoglycans are strategically positioned to regulate interactions between cells and their surrounding environment. Such interactions play key roles in several biological processes, such as cell recognition, adhesion, migration, and growth. These biological functions are in turn necessary for the maintenance of differentiated phenotype and for normal and neoplastic development. There is ample evidence that a special type of proteoglycan bearing heparan sulfate side chains is localized at the cell surface in a variety of epithelial and mesenchymal cells. This molecule exhibits selective patterns of reactivity with various constituents of the extracellular matrix and plasma membrane, and can act as growth modulator or as a receptor. Certainly, during cell division, membrane constituents undergo profound rearrangement, and proteoglycans may be intimately involved in such processes. The present work will focus on recent advances in our understanding of these complex macromolecules and will attempt to elucidate the biosynthesis, the structural diversity, the modes of cell surface association, and the turnover of heparan sulfate proteoglycans in various cell systems. It will then review the multiple proposed roles of this molecule, with particular emphasis on the binding properties and the interactions with various intracellular and extracellular elements. Finally, it will focus on the alterations associated with the neoplastic phenotype and will discuss the possible consequences that heparan sulfate may have on the growth of normal and transformed cells.  相似文献   

15.
We localized heparan sulfate proteoglycan (HSPG) in the basement membranes of ciliary epithelium and plantar epidermis, using Cuprolinic blue to stain its side chains and an immunogold procedure to detect its core protein. In accord with most of the literature, staining with Cuprolinic blue in glutaraldehyde fixative yielded three to five times as many reaction products along the two surfaces than along the center of the lamina densa, whereas immunogold labeling for the core protein after formaldehyde fixation yielded about twice as many gold particles over the center than along the surfaces of the lamina densa. It therefore appeared that HSPG side chains predominated outside, and the core protein within, the lamina densa. To find out whether the discrepancy was true or was an artifact caused by differences in processing, we attempted to combine the two approaches on the same material. This was found possible when Cuprolinic blue was used in formaldehyde fixative, embedding was in LR White, and immunogold labeling was performed on thin sections as usual. Under these conditions, both Cuprolinic blue reaction products and immunogold particles predominated over the lamina densa in the two basement membranes under study. Moreover, evidence was present that reaction products and immunogold particles either overlapped each other or were closely associated. The lens capsule (a thick basement membrane) also showed their co-localization. The discrepancy initially observed between side chains and core protein location was attributed to differences in processing, since Cuprolinic blue staining had been carried out in the course of glutaraldehyde fixation whereas immunogold labeling was done after formaldehyde fixation. The results lead to two conclusions. First, processing differences may alter the localization of HSPG and possibly other proteoglycans. Second, both HSPG side chains and core protein are localized in the same sites within basement membrane.  相似文献   

16.
Perlecan is a multifaceted heparan sulfate proteoglycan that is expressed not only as an intrinsic constituent of basement membranes but also as a cell-surface and pericellular proteoglycan. Perlecan functions as a ligand reservoir for various growth factors that become stabilized against misfolding or proteolysis and acts as a co-receptor for basic fibroblast growth factor by augmenting high affinity binding and receptor activation. These biological properties are mediated by the heparan sulfate moiety. Rather little is known about the protein core's mediation of functions. We have recently discovered that fibroblast growth factor-7 (FGF7) binds to perlecan protein core and that exogenous perlecan efficiently reconstitutes FGF7 mitogenic activity in perlecan-deficient cells. In this report we examined the specific binding of FGF7 to various domains and subdomains of perlecan protein core. Using several experimental approaches including overlay protein assays, radioligand binding experiments, and the yeast two-hybrid system, we demonstrate that FGF7 binds specifically to the N-terminal half of domain III and to a lesser extent to domain V, with affinity constants in the range of 60 nM. Thus, perlecan protein core should be considered a novel biological ligand for FGF7, an interaction that could influence cancer growth and tissue remodeling.  相似文献   

17.
Electron microscopic immunostaining of rat duodenum and incisor tooth was used to examine the location of four known components of the basement-membrane region: type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin. Antibodies or antisera against these substances were localized by direct or indirect peroxidase methods on 60-microns thick slices of formaldehyde-fixed tissues. In the basement- membrane region of the duodenal epithelium, enamel-organ epithelium, and blood-vessel endothelium, immunostaining for all four components was observed in the basal lamina (also called lamina densa). The bulk of the lamina lucida (rara) was unstained, but it was traversed by narrow projections of the basal lamina that were immunostained for all four components. In the subbasement-membrane fibrous elements or reticular lamina, immunostaining was confined to occasional "bridges" extending from the epithelial basal-lamina to that of adjacent capillaries. The joint presence of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in the basal lamina indicates that these substances do not occur in separate layers but are integrated into a common structure.  相似文献   

18.
Activation of neuropeptide receptors on leukocytes induces chemotaxis. We determined in Boyden chambers with micropore filters, whether in human monocytes and lymphocytes this migratory response is heparan sulfate proteoglycan (HSPG) dependent. Chemotaxis toward calcitonin gene-related peptide, secretoneurin, vasoactive intestinal peptide (VIP), and substance P (SP) was abolished by removal of heparan sulfate side chains from cell surface proteoglycans or by addition of anti-syndecan-4 antibodies. Inhibition of neuropeptide-induced chemotaxis by dimethyl sphingosine (DMS), an inhibitor of sphingosine kinase, indicates transactivation of the sphingosine-1-phosphate chemotaxis pathway which was previously identified as being syndecan-4-related. Data suggest that HSPGs are involved in neuropeptide-induced chemotaxis of leukocytes.  相似文献   

19.
Data from cell culture and animal models of prion disease support the separate involvement of both heparan sulfate proteoglycans and copper (II) ions in prion (PrP) metabolism. Though direct interactions between prion protein and heparin have been recorded, little is known of the structural features implicit in this interaction or of the involvement of copper (II) ions. Using biosensor and enzyme-linked immunosorbent assay methodology we report direct heparin and heparan sulfate-binding activity in recombinant cellular prion protein (PrP(c)). We also demonstrate that the interaction of recombinant PrP(c) with heparin is weakened in the presence of Cu(II) ions and is particularly sensitive to competition with dextran sulfate. Competitive inhibition experiments with chemically modified heparins also indicate that 2-O-sulfate groups (but not 6-O-sulfate groups) are essential for heparin recognition. We have also identified three regions of the prion protein capable of independent binding to heparin and heparan sulfate: residues 23-52, 53-93, and 110-128. Interestingly, the interaction of an octapeptide-spanning peptide motif amino acids 53-93 with heparin is enhanced by Cu(II) ions. Significantly, a peptide of this sequence is able to inhibit the binding of full-length prion molecule to heparin, suggesting a direct role in heparin recognition within the intact protein. The collective data suggest a complex interaction between prion protein and heparin/heparan sulfate and has implications for the cellular and pathological functions of prion proteins.  相似文献   

20.
Human colon carcinoma cells synthesize a high-molecular-weight heparan sulfate proteoglycan which is localized at the cell surface. In this study we have performed a series of immunoprecipitation and pulse-chase experiments associated with various pharmacological agents that interfere with the synthesis and post-translational modification of the proteoglycan. We demonstrate that colon carcinoma cells synthesize the heparan sulfate proteoglycan from a 400-kDa precursor protein that is immunologically related to the Engelbreth-Holm-Swarm (EHS) tumor cell proteoglycan. The cells contain a large pool of precursor protein with a half-life of about 75 min. Most of the precursor protein receives heparan sulfate side chains and is then transported to the cell surface and released into the medium. A portion of the precursor pool, however, does not receive heparan sulfate chains but is secreted into the medium. The glycosylation and subsequent secretion of the 400-kDa precursor protein was inhibited by NH4Cl and even more by monensin, indicating that the transit of precursor from the rough endoplasmic reticulum to the cell surface occurred through the Golgi complex and acidic compartments. The existence of a sizable pool of precursor protein was confirmed by additional experiments using cycloheximide and xyloside. These experiments showed that the half-life of the precursor protein was also 75 min and that stimulation of heparan sulfate synthesis by xyloside was greatly enhanced (about 12-fold) after new protein core synthesis was blocked by cycloheximide. Although the structural models proposed for the EHS and colon carcinoma heparan sulfate proteoglycans differ, the observation that they are derived from a precursor protein with dimensional and immunological similarities suggests that they may be genetically related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号