首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of melted regions from A + T-rich sequences and left-handed Z-DNA by alternating purine-pyrimidine sequences will both be facilitated by negative supercoiling, and thus if the sequences are present within the same plasmid molecule they will compete for the free energy of supercoiling. We have studied a series of plasmids that contain either (CG)8 or (TG)12 sequences in either G + C or A + T-rich contexts, by means of two-dimensional gel electrophoresis and chemical modification. We observe both B-Z and helix-coil transitions in all plasmids at elevated temperatures and low ionic strength. The plasmids fall into a number of different classes, in terms of the conformational behavior. As the superhelix density is increased, pCG8/vec ((CG)8 in G + C-rich context) undergoes an initial B-Z transition, followed by melting transitions in sequences remote from the (CG)8 sequence. The two transitions are coupled through the topology of the molecule but are otherwise independent. When the (CG)8 sequence was placed in an A + T-rich context (pCG8/col), the helix-coil transition was perturbed by the presence of the Z-DNA segment. Replacement of the (CG)8 tracts by (TG)12 sequences resulted in a further level of interaction between the transitions. Statistical mechanical modeling of the transitions suggested that at intermediate levels of negative supercoiling the Z-DNA formed by the (TG)12 sequence has a lowered probability due to the helix-coil transition in the A + T-rich sequences. These studies illustrate the complexities of competing conformational equilibria in supercoiled DNA molecules.  相似文献   

2.
An alternating adenine-thymine tract in a relaxed closed circular plasmid was found to become strongly reactive to osmium tetroxide in the presence of actinomycin D. We suggest that this is due to a local overwinding of the alternating tract as a result of positive supercoiling induced by intercalation of the antibiotic at GpC sequences elsewhere in the DNA. We have previously shown that (A.T)n sequences undergo a local underwinding in response to negative supercoiling, and it appears that such sequences are especially torsionally deformable in both directions.  相似文献   

3.
(TG:CA)(n) repeats in human housekeeping genes   总被引:1,自引:0,他引:1  
The unravelling of human genome sequence gives a new opportunity to investigate the role of repetitive sequences in gene regulation. Among the various types of repetitive sequences, the dinucleotide (TG:CA)(n) repeats are one of the most abundant in human genome and exhibit polymorphism. Early on, it was observed that the (TG:CA)(n) repeats could modulate gene expression and has the propensity to undergo conformational transitions in in vivo conditions. Recent reports describe the role of polymorphic (TG:CA)(n) repeats in gene regulation in several genes. In this work, we have analysed the distribution of (TG:CA)(n) (n >or= 6) repeats in human 'housekeeping genes' on which recently released Gene Chip data is available. Our results indicate that (i). The number of short intragenic (TG:CA)(n) repeats is significantly higher than the number of long repeats (ii). the proportion of genes with (TG:CA)(n) repeats (n >or= 12 units) had lower mean expression levels compared to those without these repeats, (iii). the genes belonging to the functional class of 'signalling and communication' had a positive association with repeats in contrast to the genes belonging to the 'information' class that were negatively associated with repeats.  相似文献   

4.
We have studied the genetic behavior of the alternating copolymer d(TG.AC)n inserted into a defined position in the genome of the yeast Saccharomyces cerevisiae. When d(TG.AC)n sequences were present at the HIS3 locus on homologous chromosomes, diploid cells undergoing meiosis generated an excess of tetrads containing reciprocally recombined products with crossover points close to the repetitive DNA insert. Most of these tetrads exhibited gene conversion of a d(TG.AC)n insert. However, the insertion of d(TG.AC)n sequences had no effect on the frequency of gene conversion of closely linked marker genes. Surprisingly, when d(TG.AC)n sequences were present on only one homolog at the HIS3 locus, one-half of the tetrads exhibiting nonparental segregation for marker genes that flanked the repetitive DNA insert were very unusual and appeared to have arisen by multiple recombination events in the vicinity of the d(TG.AC)n insert. Similar multiply recombinant tetrads were seen in crosses in which d(TG.AC)n sequences were present on both homologs. Combined, the data strongly suggest that d(TG.AC)n sequences significantly enhance reciprocal meiotic recombination and may be important in causing multiple recombination events to occur within a relatively small region of the yeast chromosome. Molecular evidence is presented that clearly documents the postmeiotic segregation of an 80-base stretch of d(TG.AC)n.  相似文献   

5.
Single and multiple loops were seen when the plasmid pRW751 was allowed to react with anti-Z-DNA or with a Z-specific cross-linking agent. Loop formation was dependent upon negative supercoiling and the presence of Z-specific antibody or cross-linking agent. Restriction enzyme mapping located 18 sites at the bottoms of loops, in addition to the two (dG-dC)n inserts of pRW751. No more than 5 loops were seen in any of the measured molecules; thus, not all potential Z-sites assume the Z conformation at any particular time. Stretches of alternating purine-pyrimidine sequences occur at all 20 sites. Almost all of the Z sites could be mapped to regions located at the beginnings or ends of reading frames or at various regulatory sites. Our findings support the concept that supercoiling brings distant sequences to within 5A of one another, allowing joint participation in regulatory processes controlled by DNA-binding proteins.  相似文献   

6.
Negative supercoiling of substrate DNA dramatically alters the in vitro sequence specificity of mammalian DNA methyltransferase (DNA MeTase). This result suggests that in vivo site selection by DNA MeTase could be regulated by conformational information in the form of alternative secondary structures induced in DNA by local supercoiling or by the binding of specific nuclear proteins. DNA in the left-handed Z-form is shown not to be a substrate for mammalian DNA MeTase. The sensitivity of DNA MeTase to DNA structure may also make it useful as a probe for sequences which undergo supercoiling-dependent structural transitions in vitro.  相似文献   

7.
The ability of negative supercoiling to induce a left-handed helix in the recombinant plasmid pRW777, which contains a tract of 64 base pairs of almost perfect (dT-dG) . (dC-dA) from the mouse kappa immunoglobin gene, was studied. S1 nuclease recognizes and cleaves within the junction region which must exist adjacent to the (dT-dG)n . (dC-dA)n tract when in a left-handed state. The cleavage pattern indicates conformational flexibility and structural differences between the two existing junctions. The 64-base pair alternating copolymer undergoes the supercoil-induced formation of a left-handed state over the superhelical density range of -0.04 to -0.06, indicating that (dT-dG)n . (dC-dA) sequences form a left-handed helix less readily than (dC-dG)n . (dC-dG)n sequences of equivalent length. However, these supercoil densities are within the range found in vivo. Supercoil relaxation and antibody binding studies confirmed that the (dT-dG)n . (dC-dA)n tract in supercoiled pRW777 was in a left-handed helix.  相似文献   

8.
Feng YX  Li T  Campbell S  Rein A 《Journal of virology》2002,76(22):11757-11762
Recombinant human immunodeficiency virus type 1 (HIV-1) Gag protein can assemble into virus-like particles (VLPs) in suitable buffer conditions with nucleic acid. We have explored the role of nucleic acid in this assembly process. HIV-1 nucleocapsid protein, a domain of Gag, can bind to oligodeoxynucleotides with the sequence d(TG)(n) with more salt resistance than to d(A)(n) oligonucleotides. We found that assembly of VLPs on d(TG)(n) oligonucleotides was more salt resistant than assembly on d(A)(n); thus, the oligonucleotides do not simply neutralize basic residues in Gag but provide a binding surface upon which Gag molecules assemble into VLPs. We also found that Gag molecules could be "trapped" on internal d(TG)(n) sequences within 40-base oligonucleotides, rendering them unable to take part in assembly. Thus, assembly on oligonucleotides requires that Gag proteins bind near the ends of the nucleic acid, and binding of Gag to internal d(TG)(n) sequences is apparently cooperative. Finally, we showed that nucleic acids in VLPs can exchange with nucleic acids in solution; there is a hierarchy of preferences in these exchange reactions. The results are consistent with an equilibrium model of in vitro assembly and may help to explain how Gag molecules in vivo select genomic RNA despite the presence in the cell of a vast excess of cellular mRNA molecules.  相似文献   

9.
Supercoiling response of a bacterial tRNA gene.   总被引:13,自引:6,他引:7       下载免费PDF全文
  相似文献   

10.
11.
E M Lafer  R Sousa    A Rich 《The EMBO journal》1985,4(13B):3655-3660
It is shown that anti-Z-DNA antibody binding can stabilize sequences of d(CG/GC)n and d(CA/GT)n in the Z-DNA conformation in a plasmid in the complete absence of supercoiling. This effect is quantitated by using antibody preparations of different affinities and varying concentrations. The d(CG/GC)n sequence can be stabilized under physiological conditions. This is the first demonstration that a region of Z-DNA can be stabilized by protein binding in a completely relaxed plasmid under physiological conditions. The antibody-Z-DNA complex in the relaxed plasmid is shown to be an equilibrium state and not a long-lived kinetic intermediate since specific binding of the antibody to linearized plasmids containing Z-forming sequences is observed.  相似文献   

12.
13.
Abstract Telomeric DNA sequences are known to adopt unusual DNA structures upon protonation when contained into negatively supercoiled DNA. In this paper, the structural properties of (T(2)AG(3))(n) telomeric sequences of different length is analyzed in detail. Transition to the protonated form is observed at very low pH for (T(2)AG(3))(n<8) sequences. Formation of the protonated form is facilitated by negative supercoiling. The patterns of chemical modification obtained with different chemical reagents indicate that protonation induces denaturation of the (T(2)AG(3))(n) telomeric sequences. Upon denaturation, the "C-rich" strand becomes structured forming, most likely, hairpin-like conformations stabilized by the formation of C(+)·C pairs and, probably, of A(+)·A pairs. The "G-rich" strand of the (T(2)AG(3))(8) sequence shows also signs of becoming structured giving rise to various structural conformers which might include triple- and tetra-stranded conformations. However, in the case of shorter sequences, the "G-rich" strand remains basically single-stranded.  相似文献   

14.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

15.
Intervening sequences in human fetal globin genes adopt left-handed Z helices   总被引:30,自引:0,他引:30  
The large intervening sequences ( IVS2 ) of three human fetal globin genes contain tracts of alternating purine-pyrimidine sequences approximately 40-60 base pairs in length which adopt left-handed Z DNA helices under the influence of negative supercoiling. The amount of negative supercoiling (approximately 0.045) required for the right- to left-handed transitions is within the physiological range. The structural aberrations between the right- and left-handed helices were mapped by sequencing the S1 nuclease cleavage sites. Two-dimensional gel electrophoretic analyses of the supercoil-induced relaxation served to characterize the type and length of left-handed structure. Furthermore, binding studies with several types of antibodies confirmed the presence of left-handed helices. Since these simple sequences appear to be hotspots for recombination and gene conversion, unusual DNA conformations may participate in genetic expression.  相似文献   

16.
Molecular mechanisms responsible for the genetic instability of DNA trinucleotide sequences (TRS) account for at least 20 human hereditary disorders. Many aspects of DNA metabolism influence the frequency of length changes in such repeats. Herein, we demonstrate that expression of Escherichia coli SOS repair proteins dramatically decreases the genetic stability of long (CTG/CAG)n tracts contained in plasmids. Furthermore, the growth characteristics of the bacteria are affected by the (CTG/CAG)n tract, with the effect dependent on the length of the TRS. In an E. coli host strain with constitutive expression of the SOS regulon, the frequency of deletions to the repeat is substantially higher than that in a strain with no SOS response. Analyses of the topology of reporter plasmids isolated from the SOS+ and SOS- strains revealed higher levels of negative supercoiling in strains with the constitutively expressed SOS network. Hence, we used strains with mutations in topoisomerases to examine the effect of DNA topology upon the TRS instability. Higher levels of negative DNA supercoiling correlated with increased deletions in long (CTG/CAG)n, (CGG/CCG)n and (GAA/TTC)n. These observations suggest a link between the induction of bacterial SOS repair, changes in DNA topology and the mechanisms leading to genetic instability of repetitive DNA sequences.  相似文献   

17.
Conter A 《Journal of bacteriology》2003,185(17):5324-5327
The relationship between the survival of Escherichia coli during long-term starvation in rich medium and the supercoiling of a reporter plasmid (pBR322) has been studied. In aerated continuously shaken cultures, E. coli lost the ability to form colonies earlier in rich NaCl-free Luria-Bertani medium than in NaCl-containing medium, and the negative supercoiling of plasmid pBR322 declined more rapidly in the absence of NaCl. Addition of NaCl at the 24th hour restored both viability and negative supercoiling in proportion to the concentration of added NaCl. Addition of ofloxacin, a quinolone inhibitor of gyrase, abolished rescue by added NaCl in proportion to the ofloxacin added. This observation raises the possibility that cells had the ability to recover plasmid supercoiling even if nutrients were not available and could survive during long-term starvation in a manner linked, at least in part, to the topological state of DNA and gyrase activity.  相似文献   

18.
Alternating d(GA.TC)n DNA sequences are known to undergo transition to *H-DNA in the presence of zinc. Here, the effect of zinc on the secondary DNA structure of d(GA.TC)n sequences of different length (n = 5, 8, 10 and 19) was determined. Short d(GA.TC)n sequences form *H-DNA with a higher difficulty than longer ones. At bacterial negative superhelical density (- sigma = 0.05), zinc still induces transition to the *H-DNA conformation at a d(GA.TC)10 sequence but shorter sequences do not form *H-DNA. Transition to *H-DNA at a d(GA.TC)8 sequence is observed under conditions which destabilize the DNA double helix such as high negative supercoiling or low ionic strength. Our results indicate that a first step in the transition to *H-DNA is the formation of a denaturation bubble at the centre of the repeated DNA sequence, suggesting that the primary role of zinc is to induce a local denaturation of the DNA double helix. Subsequently, zinc might also participate in the stabilization of the altered DNA conformation through its direct interaction with the bases. Based on these results a model for the formation of *H-DNA is proposed.  相似文献   

19.
S C Harvey  J Luo    R Lavery 《Nucleic acids research》1988,16(24):11795-11809
Closed circular DNA containing polypurine-polypyrimidine sequences can adopt a triple helical stem-loop structure under supercoiling pressure. We describe an automated procedure for building model loops and its application to the investigation of the polypyrimidine loop at the end of such a triple helical stem. All possible combinations of 3'-stacked and 5'-stacked structures have been examined for loops containing three, four, five, and six nucleotides. The lowest energy conformation is a four-membered loop with all bases stacked on the strand at the 3' end of the loop. The model predicts that sequences (GA)n, (GGGA)n and (GAAA)n should form the stem-loop structure more easily than (GGA)n and (GAA)n. It is also predicted that when a polypurine-polypyrimidine sequence converts from a double stranded structure to a triple stranded stem-loop, the most favorable conditions are those where an even number of basepairs makes the transition. Experimental tests of these predictions are also described.  相似文献   

20.
The Epstein-Barr virus (EBV) latent origin of plasmid replication (oriP) contains two essential regions, a family of repeats with 20 imperfect copies of a 30-bp sequence and a dyad symmetry element with four similar 30-bp repeats. Each of the repeats has an internal palindromic sequence and can bind EBNA 1, a protein that together with oriP constitutes the only viral element necessary for EBV maintenance and replication. Using single-strand-specific nucleases, we have probed plasmids containing oriP-derived sequences for the presence of secondary structural elements. Multiple single-stranded structures were detected within the oriP region. Of the two essential elements of oriP, the family of repeats seemed to extrude these structures at a much higher frequency than did sequences within the dyad symmetry region. Though negative supercoiling was found to stabilize the single-stranded structures, they showed significant stability even after linearization of the oriP plasmids. Two major single-stranded structures detected involved approximately 12 bp of DNA. These loci could be transiently unwound regions that form because of negative supercoiling and the high A + T content of this region of DNA, or they could be cruciform structures extruded within the palindromic sequences of oriP that may be important sites for protein-DNA interactions in the EBV oriP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号