首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Marks  M J Berg  R C Makofske  W Danho 《Peptides》1990,11(4):679-682
Cystatin domains or homologous sequences were synthesized and tested as inhibitors of papain, and rat brain cathepsins B and L. These domains included: I, an enzyme substrate binding site containing a -GG- cleavage site (YGGFL); II, known cystatin consensus sequences (-QVVAG- or -QLVSG-); and III, the proposed ancillary site for binding of chicken cystatin to papain (-IPWLN-). A Domain II analog QVVAG(K-NH2) inhibited cathepsin L and papain with Ki 1-4 X 10(-4) M but was inactive towards cathepsin B. A peptide containing Domains I and II, YGGFL-QVVAG(K-NH2), inhibited papain and cathepsin B with Ki 10(-4)-10(-5) M, and cathepsin L with Ki 10(-6) M. The presence of Domain III in the analog YGGFL-QVVAG-IPWLN(K-NH2) resulted in a 10-fold increase in potency towards papain. These data demonstrated that putative cystatin domains are: 1) probably proximal in the intact cystatins; 2) can be linked directly to each other to yield smaller peptides active as inhibitors; 3) showed some specificity towards the three cysteine proteinases.  相似文献   

2.
E Pol  I Bj?rk 《Biochemistry》1999,38(32):10519-10526
The importance of residues in the second hairpin loop and the C-terminal end of mammalian cystatin B for binding of proteinases was elucidated by mutagenesis of the bovine inhibitor. Bovine cystatin B was modeled onto the crystal structure of the human inhibitor in complex with papain with minimal structural changes. Substitution of the two deduced contact residues in the second hairpin loop, Leu-73 and His-75, with Gly resulted in appreciably reduced affinities for papain and cathepsins H and B. These losses indicated that the two residues together contribute 20-30% of the free energy of binding of cystatin B to these enzymes and that Leu-73 is responsible for most of this contribution. In contrast, the small decrease in the affinity for cathepsin L suggested that the second hairpin loop is less important for inhibition of this proteinase. Replacement of the contact residue in the C-terminal end, Tyr-97, with Ala resulted in losses in affinity for papain and cathepsins L and H that were consistent with Tyr-97 contributing 6-12% of the energy of binding of cystatin B to these enzymes. However, this substitution minimally affected the affinity for cathepsin B, indicating that the C-terminal end is of limited importance for binding of this proteinase. All affinity decreases were due predominantly to increased dissociation rate constants. These results show that both the second hairpin loop and the C-terminal end of cystatin B contribute to anchoring the inhibitor to target proteinases, each of the two regions interacting with a different domain of the enzyme. However, the relative contributions of these two interactions vary with the proteinase.  相似文献   

3.
The interaction of activated papain with low molecular weight cystatin (Mr 12500) purified from human placenta has been studied. Analysis of inhibition of caesinolytic activity of papain by cystatin showed stoichiometry of 1:1. Kinetic studies gave an inhibition constant (K(i)) value of 5.5 x 10(-8) M and association rate constant (K(+1)) value of 3.4 x 10(4) (M(-1) s(-1)). All spectroscopic studies showed conformational changes in both papain and cystatin on formation of complex. The data suggest perturbation of environment of aromatic residues and change of their native structure and conformation thereby shedding light on the behaviour of cystatins, especially interaction of placental cystatin with thiol protease inhibitors.  相似文献   

4.
A multidomain cystatin was purified from the leaves of mature and seedling tomato plants (Lycopersicon esculentum, cv Bonnie Best) that had been sprayed with methyl jasmonate. For seedlings, cystatin purification was accomplished using EDTA washing, KCI extraction, 70 degrees C heat treatment, ammonium sulfate fractionation and gel filtration chromatography. For mature plants, DEAE chromatography was also needed to separate a protease, hydrolysis products of cystatin and serine proteinase inhibitors from the intact cystatin. Purified tomato cystatin has a molecular weight (Mr) of 88 kDa, eight papain binding domains, is a non-competitive inhibitor of papain with K1 of 1.4 nM and is not a glycoprotein. Tryptic peptides (Mr 26, 13 kDa) and most chymotryptic peptides (Mr 33, 13 kDa) of tomato cystatin retain inhibitor activity. Amino acid analysis revealed no Cys; Asx, Glx, Gly, Ser accounted for almost half the residues and there was some homology with potato multicystatin. Activity is stable at pH 4-11 at 4 degrees C, but unstable at neutral pH at > 60 degrees C (Ea = 92.5 kJ/mole). Extracts of mature plants treated with methyl jasmonate contain lower Mr cystatins that appear to result from the action of an endogenous 26 kDa protease on the 88 kDa inhibitor.  相似文献   

5.
The interactions between egg-white cystatin and the cysteine proteinases papain, human cathepsin B and bovine dipeptidyl peptidase I were studied. Cystatin was shown to be a competitive reversible inhibitor of cathepsin B (Ki 1.7 nM, k-1 about 2.3 X 10(-3) s-1). The inhibition of dipeptidyl peptidase I was shown to be reversible (Ki(app.) 0.22 nM, k-1 about 2.2 X 10(-3) s-1). Cystatin bound papain too tightly for Ki to be determined, but an upper limit of 5 pM was estimated. The association was a second-order process, with k+1 1.0 X 10(7) M-1 X s-1. Papain was shown to form equimolar complexes with cystatin. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of complexes formed between papain or cathepsin B and an excess of cystatin showed no peptide bond cleavage after incubation for 72 h. The reaction of the active-site thiol group of papain with 5,5'-dithiobis-(2-nitrobenzoic acid) at pH 8 and 2,2'-dithiobispyridine at pH 4 was blocked by complex-formation. Dipeptidyl peptidase I and papain were found to compete for binding to cystatin, contrary to a previous report. The two major isoelectric forms of cystatin were found to have similar specific inhibitory activities for papain, and similar affinities for papain, cathepsin B and dipeptidyl peptidase I. This, together with specific oxidation of the N-terminal serine residue with periodate, showed the N-terminal amino group of cystatin 1 to be unimportant for inhibition. General citraconylation of amino groups resulted in a large decrease in the affinity of cystatin for dipeptidyl peptidase I. It is concluded that the interaction of cystatin with cysteine proteinases has many characteristics similar to those of an inhibitor such as aprotinin with serine proteinases.  相似文献   

6.
D K N?gler  R Zhang  W Tam  T Sulea  E O Purisima  R Ménard 《Biochemistry》1999,38(39):12648-12654
Cathepsin X is a novel cysteine protease which was identified recently from the EST (expressed sequence tags) database. In a homology model of the mature cathepsin X, a unique three residue insertion between the Gln22 of the oxyanion hole and the active site Cys31 was found to be located in the primed region of the binding cleft as part of a surface loop corresponding to residues His23 to Tyr27, which we have termed the "mini-loop". From the model, it became apparent that this distinctive structural feature might confer exopeptidase activity to the enzyme. To verify this hypothesis, human procathepsin X was expressed in Pichia pastoris and converted to mature cathepsin X using small amounts of human cathepsin L. Cathepsin X was found to display excellent carboxypeptidase activity against the substrate Abz-FRF(4NO(2)), with a k(cat)/K(M) value of 1.23 x 10(5) M(-)(1) s(-)(1) at the optimal pH of 5.0. However, the activity of cathepsin X against the substrates Cbz-FR-MCA and Abz-AFRSAAQ-EDDnp was found to be extremely low, with k(cat)/K(M) values lower than 70 M(-)(1) s(-)(1). Therefore, cathepsin X displays a stricter exopeptidase activity than cathepsin B. No inhibition of cathepsin X by cystatin C could be detected up to a concentration of 4 microM of inhibitor. From a model of the protease complexed with Cbz-FRF, the bound carboxypeptidase substrate is predicted to establish a number of favorable contacts within the cathepsin X binding site, in particular with residues His23 and Tyr27 from the mini-loop. The presence of the mini-loop restricts the accessibility of cystatin C as well as of the endopeptidase and MCA substrates in the primed subsites of the protease. The marked structural and functional differences of cathepsin X relative to other members of the papain family of cysteine proteases will be of great value in designing specific inhibitors useful as research tools to investigate the physiological and potential pathological roles of this novel enzyme.  相似文献   

7.
Cystatins are extensively studied cysteine protease inhibitors, found in wide range of organisms with highly conserved structural folds. S-type of cystatins is well known for their abundance in saliva, high selectivity and poorer activity towards host cysteine proteases in comparison to their immediate ancestor cystatin C. Despite more than 90% sequence similarity, the members of this group show highly dissimilar binding affinity towards papain. Cystatin M/E is a potent inhibitor of legumain and papain like cysteine proteases and recognized for its involvement in skin barrier formation and potential role as a tumor suppressor gene. However, the structures of these proteins and their complexes with papain or legumain are still unknown. In the present study, we have employed computational methods to get insight into the interactions between papain and cystatins. Three-dimensional structures of the cystatins are generated by homology modelling, refined with molecular dynamics simulation, validated through numerous web servers and finally complexed with papain using ZDOCK algorithm in Discovery Studio. A high degree of shape complementarity is observed within the complexes, stabilized by numerous hydrogen bonds (HB) and hydrophobic interactions. Using interaction energy, HB and solvent accessible surface area analyses, we have identified a series of key residues that may be involved in papain–cystatin interaction. Differential approaches of cystatins towards papain are also noticed which are possibly responsible for diverse inhibitory activity within the group. These findings will improve our understanding of fundamental inhibitory mechanisms of cystatin and provide clues for further research.  相似文献   

8.
S Estrada  A Pavlova  I Bj?rk 《Biochemistry》1999,38(22):7339-7345
The affinity and kinetics of binding of three N-terminally truncated variants of the cysteine proteinase inhibitor cystatin A to cysteine proteinases were characterized. Deletion of Met-1 only minimally altered the inhibitory properties of the protein. However, deletion also of Ile-2 resulted in reduced affinities of 900-, >/=3-, and 200-fold for papain and cathepsins L and B, respectively. Further truncation of Pro-3 substantially increased the inhibition constants to approximately 0.5 microM for papain and cathepsin L and to 60 microM for cathepsin B, reflecting additionally 2 x 10(3)-, 2 x 10(4)-, and 400-fold decreased affinities, respectively. The reductions in affinity shown by the latter mutant indicate that the N-terminal region contributes about 40% of the total free energy of binding of cystatin A to cysteine proteinases. Moreover, Pro-3 and to a lesser extent Ile-2 are the residues responsible for this binding energy. The reduced affinities for papain and cathepsin L were due only to higher dissociation rate constants, whereas both lower association and higher dissociation rate constants contributed to the decreased affinity for cathepsin B. These differential effects indicate that the N-terminal portion of cystatin A primarily functions by stabilizing the complexes with enzymes having easily accessible active-site clefts, e.g., papain and cathepsin L. In contrast, the N-terminal region is required also for an initial binding of cystatin A to cathepsin B, presumably by promoting the displacement of the occluding loop and allowing facile interaction of the rest of the inhibiting wedge with the active-site cleft of the enzyme.  相似文献   

9.
The aim of this work was to elucidate the roles of individual residues within the flexible second binding loop of human cystatin A in the inhibition of cysteine proteases. Four recombinant variants of the inhibitor, each with a single mutation, L73G, P74G, Q76G or N77G, in the most exposed part of this loop were generated by PCR-based site-directed mutagenesis. The binding of these variants to papain, cathepsin L, and cathepsin B was characterized by equilibrium and kinetic methods. Mutation of Leu73 decreased the affinity for papain, cathepsin L and cathepsin B by approximately 300-fold, >10-fold and approximately 4000-fold, respectively. Mutation of Pro74 decreased the affinity for cathepsin B by approximately 10-fold but minimally affected the affinity for the other two enzymes. Mutation of Gln76 and Asn77 did not alter the affinity of cystatin A for any of the proteases studied. The decreased affinities were caused exclusively by increased dissociation rate constants. These results show that the second binding loop of cystatin A plays a major role in stabilizing the complexes with proteases by retarding their dissociation. In contrast with cystatin B, only one amino-acid residue of the loop, Leu73, is of principal importance for this effect, Pro74 assisting to a minor extent only in the case of cathepsin B binding. The contribution of the second binding loop of cystatin A to protease binding varies with the protease, being largest, approximately 45% of the total binding energy, for inhibition of cathepsin B.  相似文献   

10.
Human salivary cystatin SN (CsnSN) is a member of the cystatin superfamily of cysteine proteinase inhibitors. In this study we used a baculovirus expression system to produce a full-length unaltered CsnSN and its variants. The variants were constructed with the changes in the three predicted proteinase-binding regions: the N-terminus (variant N(12-13), G12A-G13A), beta-hairpin loop I (variant L(56-58), Q56G-T57G-V58G) and beta-hairpin loop II (variant L(106-107), P106G-W107G). The secreted CsnSNs were purified using sequential spiral cartridge ultrafiltration and DE-52 radial flow chromatography. The purified proteins were examined for papain- and cathepsin C-inhibition. The wild-type CsnSN, and variants N(12-13) and L(106-107) bound tightly to papain (K(i) < 10 pM), whereas mutation in the loop I reduced binding affinity 5700-fold (K(i) = 57 nM). On the other hand, the wild-type CsnSN bound to cathepsin C less tightly (K(i) = 100 nM). The mutation in the N-terminus or loop I reduced binding affinity by 16 (K(i) = 1.6 microM)- and 19-fold (K(i) = 1.9 microM), respectively, while mutation in loop II resulted in an ineffective cathepsin C inhibitor (K(i) = 14 microM). Collectively, these results suggest that the N-terminal G12-G13 residues of CsnSN are not essential for papain inhibition but play a role in cathepsin C inhibition; residues Q56-T57-V58 in the loop I are essential for both papain and cathepsin C inhibitions, and residues P106-W107 in the loop II are not important for papain inhibition but essential for cathepsin C inhibition. These results demonstrated that CsnSN variants have different effects toward different cysteine proteinases.  相似文献   

11.
Interaction of chicken cystatin with inactivated papains.   总被引:4,自引:1,他引:3       下载免费PDF全文
Papain which was inactivated by covalent attachment of small substituents to the active-site cysteine, up to the size of a carbamoylmethyl group, bound with high affinity to chicken cystatin (Kd less than approximately 15 pM), although less tightly than did active papain (Kd approximately 60 fM). However, as the size of the substituent was increased further, the affinity decreased appreciably, generally in proportion to the size of the inactivating group. For instance the dissociation constants for papain inactivated with N-ethylmaleimide and [N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-amido-(4-guanido )butane were 0.17 and approximately 10 microM respectively. The spectroscopic changes accompanying the reaction of all but the most weakly binding (Kd greater than or equal to 2 microM) inactivated papains with cystatin were similar to those induced by the active enzyme. Interactions involving the reactive cysteine residue of papain are thus not crucial for high-affinity binding of the enzyme to cystatin, in accordance with a recently proposed model for the enzyme-inhibitor complex, based on computer docking experiments. In this model there is sufficient space around the reactive cysteine in the complex for a small inactivating group, explaining the tight binding of papains with such substituents. However, larger inactivating groups cannot be accommodated in this space and therefore must displace the inhibitor out of the tight fit with the enzyme, in agreement with the observed decrease in binding affinity with increasing size of bulkier substituents. The kinetics of binding of cystatin to inactivated papains were compatible with simple, reversible, bimolecular reactions, having association rate constants of (7-9) x 10(6) M-1 s-1 at pH 7.4, 25 degrees C, similar to what was shown previously for the binding of cystatin to active papain. The rate of association of the inhibitor with either active or inactivated papain thus appears to be primarily diffusion-controlled. The decreasing affinity of cystatin for papains inactivated with groups of increasing size was shown to be due to progressively higher dissociation rate constants, consistent with the greater impairment of fit between the binding regions of the two molecules.  相似文献   

12.
Two hairpin-loop domains in cystatin family proteinase inhibitors form an interface surface region that slots into the active site cleft of papain-like cysteine proteinases, and determine binding affinity. The slot region surface architecture of the soybean cysteine proteinase inhibitor (soyacystatin N, scN) was engineered using techniques of in vitro molecular evolution to define residues that facilitate interaction with the proteinase cleft and modulate inhibitor affinity and function. Combinatorial phage display libraries of scN variants that contain mutations in the essential motifs of the first (QVVAG) and second (EW) hairpin-loop regions were constructed. Approximately 1010-1011 phages expressing recombinant scN proteins were subjected to biopanning selection based on binding affinity to immobilized papain. The QVVAG motif in the first hairpin loop was invariant in all functional scN proteins. All selected variants (30) had W79 in the second hairpin-loop motif, but there was diversity for hydrophobic and basic amino acids in residue 78. Kinetic analysis of isolated scN variants identified a novel scN isoform scN(LW) with higher papain affinity than the wild-type molecule. The variant contained an E78L substitution and had a twofold lower Ki (2.1 pM) than parental scN, due to its increased association rate constant (2.6 +/- 0.09 x 107 M-1sec-1). These results define residues in the first and second hairpin-loop regions which are essential for optimal interaction between phytocystatins and papain, a prototypical cysteine proteinase. Furthermore, the isolated variants are a biochemical platform for further integration of mutations to optimize cystatin affinity for specific biological targets.  相似文献   

13.
We had previously written a random-centroid optimization computer program for genetics (RCG) to optimize protein engineering, which was successfully applied to modify single site of the 16 amino acid residues at the active site of B. stearothermophilys neutral protease for improving thermostability [J. Agric. Food Chem., 46 (1998) 1655]. The same program was applied in this study to double-site mutation of the entire sequence of human cystatin C (HCC) with 120 residues for improving its protease inhibitory activity. The RCG program selected two sites simultaneously and amino acid residues to replace the sites selected in the sequence in order to find the best papain-inhibitory activity and stability of the protease inhibitor. Twenty-three double mutants and twenty-two single mutants were expressed by Pichia pastoris. Of the total 45 mutants, G12W/H86V mutant showed a 5-fold increase in the bioactivity over the recombinant wild-type (WT) cystatin. Also, P13F mutant exhibited a half-life temperature (T1/2) 5.2 degrees C higher than 68.2 degrees C of WT in addition to a 56% greater papain inhibitory activity. Mutation for diminishing beta-sheet content reduced polymerization of cystatin C, thus improving papain-inhibitory activity. The approach using RCG was able to improve the functional properties of cystatin by least relying on the prior knowledge of its molecular structure.  相似文献   

14.
A cystein protease inhibitor was identified in the basic fraction of bovine milk. We have reported in our previous study that the milk basic protein (MBP) fraction suppressed osteoclast-mediated bone resorption in vitro. Since osteoclasts secreted cystein protease to digest collagen in the bone matrix, we identified the cystein protease inhibitor in MBP. A 12-kDa inhibitor was purified from MBP by papain affinity gel chromatography and subsequent Hi-Load Superdex 75 gel filtration chromatography. The N-terminal sequence of the 18 amino acid residues of the inhibitor corresponded to bovine cystatin C. The 12-kDa cystein protease inhibitor in MBP therefore seemed to be cystatin C. Purified cystatin suppressed bone resorption with the use of isolated osteoclasts in vitro. Cystatin in MBP is suggested as one of the factors inhibiting bone resorption.  相似文献   

15.
We investigated the interaction between a thiol protease inhibitor, cystatin, and its target enzyme, papain, by hydrogen-deuterium (H/D) exchange in conjunction with successive analysis by collision-induced dissociation (CID) in an rf-only hexapole ion guide with electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS). The deuterium incorporation into backbone amide hydrogens of cystatin was analyzed at different time points in the presence or absence of papain, examining the mass of each fragment produced by hexapole-CID. In the absence of papain, amide hydrogens in short amino-terminal fragments, such as b10(2+) and b12(2+), were highly deuterated within 1 min. Although fewer fragments were observed for the cystatin-papain complex in the hexapole-CID spectra, significant reductions in initial deuterium content were recognized throughout the sequence of cystatin. This suggests that complex formation restricted the flexibility of the whole cystatin molecule. Detailed analyses revealed that a marked reduction in deuterium content in the region of residues 1-10 persisted for hours, suggesting that the flexible N-terminal region was tightly fixed in the binding pocket with hydrogen bonds. Our results are consistent with those of previous studies on the structure and inhibition mechanism of cystatin. We demonstrated here that enzyme-inhibitor interactions can be characterized by H/D exchange in combination with CID in a hexapole ion guide using ESI-FTICR MS rapidly and using only a small amount of sample.  相似文献   

16.
In this study, we explore the interaction between the bovine cysteine protease inhibitor cystatin B and a catalytically inactive form of papain (Fig. 1), a plant cysteine protease, by real-time label-free analysis using Biacore X100. Several cystatin B variants with point mutations in areas of interaction with papain, are produced. For each cystatin B variant we determine its specific binding concentration using calibration-free concentration analysis (CFCA) and compare the values obtained with total protein concentration as determined by A280. After that, the kinetics of each cystatin B variant binding to papain is measured using single-cycle kinetics (SCK). We show that one of the four cystatin B variants we examine is only partially active for binding. This partial activity, revealed by CFCA, translates to a significant difference in the association rate constant (ka) and affinity (KD), compared to the values calculated using total protein concentration. Using CFCA in combination with kinetic analysis in a structure-function study contributes to obtaining reliable results, and helps to make the right interpretation of the interaction mechanism.Download video file.(210M, mp4)  相似文献   

17.
A cDNA fragment encoding the cysteine protease inhibitor, cystatin, was cloned from pineapple (Ananas comosus) stem. This clone was constructed in a fusion vector and was easily over-expressed in Escherichia coli; satisfactory over-expression of non-fusion cystatin was achieved after an additional start codon was inserted prior to its coding sequence. Both recombinant cystatins were predominately found in the soluble fraction of the cell extract, and were demonstrated to be functionally active in a reverse zymographic assay. The fusion and non-fusion cystatins were separately purified to homogeneity via a His-tag or papain-coupling affinity column. Effective inhibitory activity against papain was detected with both the fusion and non-fusion cystatins with comparable K(i) values of 1.18 x 10(-10) M and 9.53 x 10(-11) M, respectively. The recombinant cystatins were found to be thermally stable up to 60 degrees C. Inhibition of the endogenous protease activity in minced fish muscle revealed that the recombinant pineapple cystatins might be an adequate stabilizer to prevent protein degradation during industrial food processing.  相似文献   

18.
The importance of individual residues in the N-terminal region of cystatin B for proteinase inhibition was elucidated by measurements of the affinity and kinetics of binding of N-terminally truncated, recombinant variants of the bovine inhibitor to cysteine proteinases. Removal of Met-1 caused an 8- to 10-fold lower affinity for papain and cathepsin B, decreased the affinity also for cathepsin L but only minimally affected cathepsin H affinity. Additional truncation of Met-2 further weakened the binding to papain and cathepsin B by 40-70-fold, whereas the affinity for cathepsins L and H was essentially unaffected. Removal of Cys-3 had the most drastic effects on the interactions, resulting in a further affinity decrease of approximately 1500-fold for papain, approximately 700-fold for cathepsin L and approximately 15-fold for cathepsin H; the binding to cathepsin B could not be assessed. The binding kinetics could only be evaluated for papain and cathepsin H and showed that the reduced affinities for these enzymes were predominantly due to increased dissociation rate constants. These results demonstrate that the N-terminal region of cystatin B contributes appreciably to proteinase inhibition, in contrast to previous proposals. It is responsible for 12-40% of the total binding energy of the inhibitor to the proteinases investigated, being of least importance for cathepsin H binding. Cys-3 is the most important residue of the N-terminal region for inhibition of papain, cathepsin L and cathepsin H, the role of the other residues of this region varying with the target proteinase.  相似文献   

19.
I Bj?rk  K Ylinenj?rvi 《Biochemistry》1990,29(7):1770-1776
The cysteine proteinase inhibitor cystatin, from chicken egg white, bound with equimolar stoichiometry to the cysteine proteinases actinidin, chymopapain A, and ficin. The changes of near-ultraviolet absorption and fluorescence induced by the binding differed appreciably for the three enzymes, indicating that these spectral changes arise predominantly from aromatic residues in the proteinases. In contrast, the near-ultraviolet circular dichroism changes were similar for all three enzymes, supporting previous evidence that these changes originate mainly from the single tryptophan residue in cystatin, Trp-104. The pseudo-first-order rate constant for the binding increased linearly with the inhibitor concentration up to as high concentrations as could be measured for the three proteinases. This behavior is consistent with the complexes being formed by simple, bimolecular reactions, as was concluded previously for the reaction of cystatin with active and inactivated forms of papain. The second-order association rate constant varied only about 4-fold, from 2.2 X 10(6) to 9.6 X 10(6) M-1.s-1, for the three enzymes, the higher of these values being similar to that measured previously for the reaction with papain. These observations are consistent with the association rate being governed mainly by the frequency of collision between the binding areas of enzyme and inhibitor. All three cystatin-proteinase complexes dissociated to intact inhibitor, demonstrating reversibility. The dissociation rate constants varied about 20000-fold, from 4.6 X 10(-7) s-1 for ficin to 1.1 X 10(-2) s-1 for actinidin, reflecting substantial differences between the enzymes in the nature of the interactions with the inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号