首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Transforming growth factor-beta 1 (TGF beta 1) is a multifunctional regulator of cell growth and differentiation. We report here that TGF beta 1 decreased the proliferation of nontransformed bovine anterior pituitary-derived cells grown in culture. We have previously demonstrated that these cells express both TGF alpha and its receptor [the epidermal growth factor (EGF) receptor] and that expression can be stimulated by phorbol ester (TPA) and EGF. TGF beta 1 treatment over a 2-day period decreased the proliferation of pituitary cells. This decreased growth rate was accompanied by a decrease in the TGF alpha mRNA level. The effect of TGF beta 1 on TGF alpha mRNA down-regulation was both dose dependent (maximal effect observed at 1.0 ng/ml TGF beta 1) and time dependent (minimum of 2-day treatment with TGF beta 1 was required before a decrease in TGF alpha mRNA was observed). Studies on TGF alpha mRNA stability indicated that TGF beta 1 did not alter the TGF alpha mRNA half-life. Treatment of the TGF beta 1 down-regulated cells with EGF resulted in the stimulation of TGF alpha mRNA levels; thus, the TGF beta 1-treated cells remained responsive to EGF. The decreased proliferation in response to TGF beta 1 could be only partially reversed by simultaneous treatment of the cells with EGF (10(-9)M) and TGF beta 1 (3.0 ng/ml). Qualitatively, the TGF beta 1-induced reduction of TGF alpha mRNA content was independent of cell density. TGF beta 1 treatment of the anterior pituitary-derived cells also reduced the levels of c-myc and EGF receptor mRNA. These results represent the first demonstration of the down-regulation of TGF alpha synthesis by a polypeptide growth factor and suggest that TGF beta 1 may be a physiological regulator of TGF alpha production in vivo.  相似文献   

2.
Alterations in c-myc proto-oncogene expression after treatment of human mammary carcinoma MDA-468 cells with epidermal growth factor (EGF) and/or transforming growth factor beta (TGF beta) have been investigated. A stimulation of c-myc messenger RNA was detected within 60 min after treatment with EGF. This induction persisted for at least 24 hr, albeit to a lower extent. The early and late increase in c-myc mRNA levels induced by EGF were inhibited by the presence of TGF beta. TGF beta alone induced little change in c-myc mRNA levels. The effect of TGF beta represents a novel action of this hormone at the level of gene expression.  相似文献   

3.
Downregulation of the c-myc gene in HL-60 cells is associated with growth inhibition and induction of differentiation. Previous studies have reported that the growth inhibitors TGF beta and TNF alpha downregulate c-myc mRNA levels, suggesting the possibility that these agents may exert some of their phenotypic effects via c-myc downregulation. Our study demonstrates that although both growth inhibitors produce a similar decrease in c-myc protein synthesis, TNF alpha produces a greater growth inhibition and differentiation induction in HL-60 cells. Combined addition of anti-myc oligomer with either growth inhibitor produces no additive effect. In fact, 4 microM anti-myc oligomer produces the same growth and differentiation effects as does 10 ng/ml TGF beta 1. We conclude that downregulation of c-myc expression represents a common mechanism of growth inhibition by TGF beta and TNF alpha, but that TNF alpha possesses an additional effect that is independent of c-myc expression.  相似文献   

4.
5.
6.
7.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

8.
We have studied the effect of the potent mitogen bombesin on the expression of c-fos and c-myc genes in quiescent mouse fibroblasts. We have demonstrated that bombesin rapidly induces a transient expression of c-fos mRNA followed by a more protracted elevation in c-myc mRNA levels. The intensity of the induction of expression of both proto-oncogenes depended on the dose of bombesin used. Prolonged treatment of the cells with TPA, which causes a selective decrease in protein kinase C activity, partially inhibited the induction of c-fos and c-myc gene expression by bombesin, similar to what has been observed with PDGF. However, a dramatic inhibition of the mitogenic response to bombesin--but not to PDGF--was found in TPA-treated cells. In contrast, TPA-treated cells showed an increased response to EGF with regard to proto-oncogene expression. The role of protein kinase C and Ca2+-dependent pathways in proto-oncogene induction by bombesin is discussed.  相似文献   

9.
Stimulation of quiescent fibroblasts to growth by polypeptide growth factors is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes. In contrast to fibroblasts, A431 cells respond to epidermal growth factor (EGF) with a decreased growth rate. Here we report that, in spite of its growth inhibitory effect, EGF rapidly induces transient expression of c-fos mRNA, followed by the synthesis of nuclear c-fos protein. In addition, EGF treatment resulted in elevated levels of c-myc expression. Practically identical results were obtained with variant A431 clones that are resistant to the inhibitory effect of EGF on cell proliferation. These observations suggest that in A431 cells c-fos and c-myc induction is a primary consequence of growth factor-receptor interaction. Indeed, efficient induction of both genes was also observed with cyanide bromide-cleaved EGF, which has previously been shown to be non-mitogenic but able to trigger early events induced by EGF. We observed strong induction of c-fos and to a lesser extent of c-myc also by TPA, and by the calcium ionophore A23187, indicating an important role for kinase C in proto-oncogene activation by growth factors.  相似文献   

10.
We investigated the molecular mechanisms underlying the ability of heparin to inhibit vascular smooth muscle cell (VSMC) growth. Previous experiments have shown that heparin inhibits induction of c-fos and c-myc protooncogene mRNA in rat VSMC stimulated by phorbol 12-myristate 13-acetate (PMA) but not when stimulated by epidermal growth factor (EGF) (Pukac, L. A., Castellot, J. J., Wright, T. C., Caleb, B. L., and Karnovsky, M. J. (1990) Cell Regul. 1, 435-443). The present experiments show that these mitogens activate distinct second messenger pathways in VSMC, because PMA but not EGF induction of c-fos and c-myc mRNA was suppressed in protein kinase C (PKC) down-regulated VSMC; this suggests that EGF does not act through a PKC-dependent pathway for induction of these genes. Heparin inhibited serum stimulation of c-fos mRNA in control VSMC, but heparin did not inhibit the smaller but significant serum stimulation of c-fos mRNA in PKC down-regulated VSMC, indicating that heparin may selectively inhibit PKC-dependent, but not PKC-independent, stimulation of gene expression. To further determine if heparin inhibits non-PKC pathways, VSMC were treated with dibutyryl cAMP, 3-isobutyl-1-methyl-xanthine, and Ca2+ ionophore A23187; stimulation of c-fos mRNA by this treatment was not inhibited by heparin. DNA synthesis and cell proliferation were inhibited in rat VSMC exposed briefly to heparin during the G0/G1 phase of the cell cycle. These experiments indicate heparin can act early in the cell cycle and suggest PKC-dependent but not PKC-independent signaling pathways for gene expression are selectively sensitive to heparin inhibition.  相似文献   

11.
12.
13.
Intracellular calcium has been proposed to be an important mediator of signal transduction by various growth factors. We have studied the role of intracellular calcium in the mitogenic stimulation of C3H 10T1/2 mouse fibroblasts by epidermal growth factor and transforming growth factor alpha. We have found that both these peptides can cause a marked, transient increase in intracellular calcium levels. This rise occurs only in the presence of extracellular calcium. However, this calcium transient is not involved in the accumulation of c-fos and c-myc mRNAs which are elicited by these growth factors, since mRNA induction is observed to an equivalent degree in the absence or presence of extracellular calcium. These results demonstrate that although these growth factors cause an increase in intracellular calcium, the calcium second messenger system is not responsible for the induction of c-fos and c-myc mRNAs in C3H 10T1/2 fibroblasts.  相似文献   

14.
15.
16.
17.
The mRNA levels of two proto-oncogenes, c-fos and c-myc, were determined in human foreskin fibroblasts exposed to epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) in a serum-free, defined medium (MCDB 104). Untreated, quiescent cells were found to have low or undetectable levels of c-fos and c-myc mRNA. Within 10 min after the addition of EGF or PDGF the c-fos mRNA level increased, reached a peak at 30 min, and then declined to the control level after 60 min. The level of c-myc mRNA increased somewhat later and peaked after 8 h in cultures treated with either of the growth factors. The c-myc mRNA level remained elevated throughout the 24 h of investigation. The concentrations of EGF and PDGF required for a maximal effect on c-fos or c-myc expression were found to be similar to those that give maximal effect on cell proliferation. Both c-fos and c-myc mRNA expression were super-induced by the addition of cycloheximide. The addition of neutralizing PDGF antibodies to cultures that had received PDGF 4 h earlier inhibited the subsequent increase in the c-myc mRNA level, indicating that the effect of PDGF on c-myc expression is not caused by a "hit and run," mechanism. Density-inhibited cells responded to EGF and PDGF by an increase in c-fos and c-myc mRNA levels in the absence of any mitogenic response. The present results conform to the view that the c-fos and c-myc proto-oncogenes may be important (or necessary) but not sufficient for the initiation of DNA synthesis. Moreover, the finding that both EGF and PDGF increase c-fos and c-myc expression supports our previous suggestion that these two growth factors may in part act via a common intracellular pathway in the prereplicative phase of human fibroblasts.  相似文献   

18.
The exact relationship between EGF-stimulated tyrosine phosphorylation, induction of the cellular proto-oncogenes c-myc and c-fos, and DNA synthesis remains uncertain. Madin-Darby Canine Kidney (MDCK) cells possess EGF receptor sites with high binding capacity, and in contrast to A431 cells, respond to EGF by increasing DNA synthesis. Following EGF stimulation of intact MDCK cells, there was a rapid and marked increase in the autophosphorylation of the EGF receptor. This was associated with an increase in the tyrosine phosphorylation of a 120 kDa phosphoprotein believed to be an endogenous substrate of this receptor kinase. The ED50 for stimulation of phosphorylation of pp120 was approximately 0.05 nM versus 1.0 nM for receptor autophosphorylation, consistent with amplification of signalling at this step in EGF action. Stimulation of DNA synthesis occurred after 12 to 24 hours and revealed even further amplification with an ED50 of about 0.1 nM. Intermediate between these events was a time-dependent activation of c-fos and c-myc gene expression. However, the ED50 for these processes was approximately 10 nM, indicating a relatively lower sensitivity of EGF for stimulation of proto-oncogene expression. Tyrphostin (RG 50864), a compound reported to inhibit specifically the EGF receptor kinase, completely blocked EGF stimulation of proto-oncogene induction. Interestingly, under the same experimental conditions, EGF receptor autophosphorylation was decreased only 60%. These data, along with the dose-response studies, indicate that proto-oncogene induction requires near maximal stimulation of EGF receptor autophosphorylation. They also suggest that, in MDCK cells, the EGF dependent induction of the c-fos and c-myc genes is not strictly correlated to the extent of EGF receptor autophosphorylation or EGF-stimulated DNA synthesis, and that EGF stimulation of DNA synthesis likely involves additional rate-limiting intermediate steps.  相似文献   

19.
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) compete with each other for binding to the EGF receptor. These two growth factors have similar actions, but there are distinguishable differences in their biological activities. It has never been clear how this one receptor can mediate different responses. A monoclonal antibody to the EGF receptor (13A9) has been identified which has only small effects on the binding of EGF to the EGF receptor, but which has very large effects on the binding of TGF alpha to the EGF receptor; 5 micrograms/mL antibody has been shown to totally block 0.87 microM TGF alpha from binding to purified EGF receptor and to lower both the high- and low-affinity binding constants of TGF alpha binding to EGF receptor on A431 cells by about 10-fold. The 13A9 antibody causes a 2.5-fold stimulation of the tyrosine kinase activity of partially purified EGF receptor, compared to a 4.0-fold stimulation of the tyrosine kinase activity by EGF under the same conditions. The data suggest either that the antibody stabilizes a conformation of the EGF receptor which is not favorable for TGF alpha binding or that it blocks a part of the surface of the receptor which is necessary for TGF alpha binding but not EGF binding.  相似文献   

20.
Nonadhesive conditions cause Swiss 3T3 fibroblasts to enter a quiescent state that is reversed upon reattachment to a surface. Previously, we demonstrated that adhesion in serum-free conditions is sufficient to activate suspension-arrested cells out of Go, with the induction of the growth-associated genes, c-fos, c-myc, and actin. In this study, we have employed this system to identify programs of gene expression that respond primarily to the adhesive state of the cell, rather than the growth state. We show that cells in different adhesive states can be distinguished by their patterns of protein synthesis. Analysis of one adhesion-responsive protein led to its identification as pro-alpha 1 (I)-collagen. Pro-alpha 1 (I)-collagen synthesis and mRNA levels are decreased up to 6-fold in suspension-arrested fibroblasts, but are enhanced up to 5-fold as cells approach confluence. This suggests that the reduced expression in suspension-arrested cells is not simply a result of quiescence. In addition, reattachment of suspended cells in serum-free conditions caused a 7-fold induction of collagen mRNA levels and a greater than 20-fold rise in the rate of procollagen synthesis. The expression of c-myc was induced during adhesion in serum-free medium as well as by serum addition to suspension-arrested cells. However, alpha 1 (I)-collagen gene expression was unaffected by serum in the absence of adhesion. These results indicate that collagen gene expression is directly responsive to cell adhesion, independent of the growth state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号