首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treiser MD  Liu E  Dubin RA  Sung HJ  Kohn J  Moghe PV 《BioTechniques》2007,43(3):361-6, 368
  相似文献   

2.
Adhesion of cells to biomaterial surfaces is one of the major factors which mediates their biocompatibility. Quantitative or qualitative cell adhesion measurements would be useful for screening new implant materials. Microjet impingement has been evaluated by scanning electron microscopy, to determine to what extent it measures cell adhesion. The shear forces of the impingement, on the materials tested here, are seen to be greater than the cohesive strength of the cells in the impinged area, causing their rupture. The cell bodies are removed during impingement, leaving the sites of adhesion and other cellular material behind. Thus the method is shown not to provide quantification of cell adhesion forces for the metals and culture plastic tested. It is suggested that with highly adherent biomaterials, the distribution and patterns of these adhesion sites could be used for qualitative comparisons for screening of implant surfaces.  相似文献   

3.
Cell-interactive polymers have been widely used as synthetic extracellular matrices to regulate cell function and promote tissue regeneration. However, there is a lack of quantitative understanding of the cell-material interface. In this study, integrin-adhesion ligand bond formation of preosteoblasts and D1 stem cells with RGD presenting alginate matrices were examined using FRET and flow cytometry. Bond number increased with adhesion ligand density but did not change with RGD island spacing for both cell types. Integrin expression varied with cell type and substrate in 2D culture, but the integrin expression profiles of both cell types were similar when cultured in 3D RGD presenting substrates and distinct from 2D culture. In summary, combining a FRET technique to quantify bond formation with flow cytometry to elucidate integrin expression can define specific cell-material interactions for a given material system and may be useful for informing biomaterial design strategies for cell-based therapies.  相似文献   

4.
The adhesion process plays a major role in the development of osteoblastic cells on various substrates used in orthopaedic applications such as metals, bioceramics, or glass. High frequency and low power ultrasounds seem to be an appropriate tool for an evaluation of interface mechanical properties. Is it a non-destructive method? We investigated osteoblastic cell cultures, maintained in their medium with high frequency, bulk longitudinal waves. The influence of both acoustical frequency and acoustical power on cell adhesion is evaluated by cell detachment ratio and re-adhesion ratio. We demonstrate the existence of a power threshold depending on the frequency, allowing optimal cellular detachment and re-adhesion. Finally, a qualitative study of the detachment phenomena is performed by use of scanning electron microscopy (SEM), Confocal Laser Scanning Microscopy and cytochemical labelling.  相似文献   

5.
Cell adhesion plays a fundamental role in the organization of cells in differentiated organs, cell motility, and immune response. A novel micromanipulation method is employed to quantify the direct contribution of surface adhesion receptors to the physical strength of cell adhesion. In this technique, a cell is brought into contact with a glass-supported planar membrane reconstituted with a known concentration of a given type of adhesion molecules. After a period of incubation (5-10 min), the cell is detached from the planar bilayer by pulling away the pipette holding the cell in the direction perpendicular to the glass-supported planar bilayer. In particular, we investigated the adhesion between a Jurkat cell expressing CD2 and a glass-supported planar bilayer containing either the glycosyl-phosphatidylinositol (GPI) or the transmembrane (TM) isoform of the counter-receptor lymphocyte function-associated antigen 3 (LFA-3) at a concentration of 1,000 molecules/microns 2. In response to the pipette force the Jurkat cells that adhered to the planar bilayer containing the GPI isoform of LFA-3 underwent extensive elongation. When the contact radius was reduced by approximately 50%, the cell then detached quickly from its substrate. The aspiration pressure required to detach a Jurkat cell from its substrate was comparable to that required to detach a cytotoxic T cell from its target cell. Jurkat cells that had been separated from the substrate again adhered strongly to the planar bilayer when brought to proximity by micromanipulation. In experiments using the planar bilayer containing the TM isoform of LFA-3, Jurkat cells detached with little resistance to micromanipulation and without changing their round shape.  相似文献   

6.
The design of a chamber for determining the centrifugal force necessary to detach cells from various substrates is presented. Cells from an SV40-transformed murine peritoneal macrophage line and human erythrocytes were used to assess the feasibility of using the chamber for studies of cell adhesion. This work was confirmed the usefulness of the chamber and provided data concerning the force necessary to detach the cells. These data indicated that the percentage of cells detached from a glass substrate was not a function of force alone. The number of cells detaching increased with the impulse applied to the cells when they were exposed to a constant force. Similarly, when the impulse applied to the IC21 cells was maintained at a constant level, the percentage of cells detached by a centrifugal force increased with the magnitude of the force.  相似文献   

7.
The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.  相似文献   

8.
Light-induced Adhesion of Spirogyra Cells to Glass   总被引:1,自引:0,他引:1       下载免费PDF全文
Nagata Y 《Plant physiology》1977,59(4):680-683
Adhesion of Spirogyra (tentatively, Spirogyra fluviatilis) cells to glass is described. The cells of an algal filament can adhere to a substrate only when they are located at the end of the filament. Rapid adhesion is induced by blue-violet light (blue adhesion) as well as by temperature shift (about 6 C → about 22 C) or shaking (dark adhesion). Adherent cells detach in 1 hour in the absence of one of these stimuli. Slow adhesion is induced by red light (red adhesion) 1 hour after irradiation, and may be controlled by phytochrome. A cell once caused to adhere by red light does not release from the glass.  相似文献   

9.
The understanding of the cellular basis of osteoblastic cell-biomaterial interaction is crucial to the analysis of the mechanism of osseointegration. Cell adhesion is a complex process that is dependent on the cell types and on the surface microtopography and chemistry of the substrate. We have studied the role of microtopography in modulating cell adhesion, in vitro, using a human osteoblastic cell line for the assessment of actin cytoskeletal organization. Through application of CLSM combining reflection and fluorescence, 2D or 3D images of cytoskeleton were obtained. On smooth surfaces, Ti CP machined, predominantly planar bone cells with an axial ratio of 1.1 were randomly oriented, with stress fibers running in all directions, and thin filopodia. On TiCP Osseotite surfaces the osteoblastic cells conformed to the irregular terrain of the sustrate with focal adhesion sites only established on the relative topographical peaks separated for a longer distance than in the machined surface, and defined wide lamellopodia and long filopodia, with enhanced expression of stress fibers, forming large clear focal contacts with the rough surface. The cytoskeletal organization of cells cultured on rough titanium supports an active role for the biomaterial surface in the events that govern osteoblastic cell adhesion. The results enforce the role of the rough sustrate surface in affecting osteoblastic cell adhesion and provide valuable information for the design of material surfaces that are required for the development of an appropriate osteogenic surface for osteoblastic anchorage, compared to machined surface, in dental implants.  相似文献   

10.
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality—improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion—are highlighted.  相似文献   

11.
The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and chemical properties of the material surface can be advantageously used for constructing patterned surfaces. Micropatterned surfaces enable regionally selective cell adhesion and directed growth, which can be utilized in tissue engineering, in constructing microarrays and in biosensorics. Nanopatterned surfaces are an effective tool for manipulating the type, number, spacing and distribution of ligands for cell adhesion receptors on the material surface. As a consequence, these surfaces are able to control the size, shape, distribution and maturity of focal adhesion plaques on cells, and thus cell adhesion, proliferation, differentiation and other cell functions.  相似文献   

12.
13.
The cell adhesion topography of mouse fibroblasts growing on glass substrates has been investigated. In order to compare cell adhesion on covered and uncovered glass, substrates were partly exposed to a solution with 0.1 mg/ml polylysine (300 kDa) for 15 min before incubation with cell suspension. After cultivation for 1, 3, 6, and 24 h their adhesion was visualised by total internal reflection microscopy. In the presence of polylysine, cells incubated for 1 h were strongly attracted to the substrate, leading to a typical cell adhesion topography characterised by round concavities under the ventral cell membrane with an approximate diameter of 1 μm. The cavity-surrounding rims were tightly bound to the glass surface. During further cell cultivation, the topography changed into a well-organised adhesion pattern with focal contact areas on the periphery of the cells. In contrast to the polylysine-mediated adhesion, cells growing on untreated surfaces did not exhibit the cavity-like topography at any stage of cultivation, but a more point spread adhesion with a dense clustering of contact-forming areas.  相似文献   

14.
Initial contact between a biological environment and a biomaterial ultimately decides the in vivo performance. Therefore, the fabrication of a delicate biointerface is important because it can be utilized as a platform for novel biomaterials. For the preparation of advanced biomedical devices such as biochips, nanoparticles, and cell engineering devices, the surface properties may be modified by the design of polymeric biomaterials. Anomalous phospholipid polymers with an isomeric oligo(lactic acid) segment were designed and evaluated as a biointerface. The phospholipid polymer containing 2-methacryloyloxyethyl phosphorylcholine was easily copolymerized with isomeric oligo(lactic acid) macromonomers, and the obtained polymer could easily form thin coating membranes as biointerfaces. The oligo(lactic acid) involves three kinds of isomers: dl-, d-, and l-forms. The favorable characteristic on the surface provides regulation of cell-material interactions on the biointerface. The oligo(lactic acid) segment could form hydrophobic domains, which were considered to be located on the interface, to enhance protein adsorption and cell adhesion. The most favorable characteristics on the biointerface were dual functions of cytocompatibility by the phospholipid polymer and cell adhesion property by the oligo(lactic acid) segment. In this study, we focused on the biological responses such as protein adsorption and cell adhesion by change in the oligo(lactic acid) component. The cell viability on the confluent stage was evaluated in terms of metabolic activity.  相似文献   

15.
Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that can optimize the equivalent stiffness experienced by a cell.  相似文献   

16.
A. Grębecki 《Protoplasma》1985,127(1-2):31-45
Summary The whole ectoplasmic layer of polytactic and heterotactic forms ofA. proteus behaves as self-contractile structure. Depending on the configuration of cell body and on the cell-to-substrate attachment conditions it continuously retracts from each distal cell projection toward its centre and/or from each free body end toward the actual adhesion sites. As in the monotactic forms, it leads to the withdrawal of the tail region behind the retraction center and may result in the fountain movement in front of it. In the long unattached pseudopodia of heterotactic forms the ectoplasm is retracted in the fountain form, with the velocity linearly increasing from the basis of pseudopodium up to its tip. In polytactic cells the fountain is often absent, if the advancing fronts immediately adhere to the substrate. When they develop in unattached condition, or are experimentally obliged to detach, the ectoplasmic cylinders of frontal pseudopodia are retracted backwards. On the substrates which do not offer firm points of support the cell periphery moves back as a whole,i.e., the principal ectoplasmic cylinder retracts together with the cylinders of lateral pseudopodia, and the direction and speed of movement in any spot is the resultant of forces produced by all other segments. The retraction of ectoplasmic gel layer is independent of the endoplasmic flow in such extent that a pseudopodium may be withdrawn as a whole in spite of the endoplasm streaming directed forwards in its interior. On the cell surface the particles attached by adhesion (glass rods) strictly follow the movements of the internal ectoplasmic structures, whereas the unattached particles flow forward in the direction of endoplasm streaming.Study supported by Research Project II. 1 of the Polish Academy of Science.  相似文献   

17.
The adhesion to glass of L 1210 cells flowing in transparent parallel plate microchannel was studied by a cinematographic method. Most cells settle on the surface when their velocity immediately preceding attachment does not exceed approx. 100 μm/sec, the greatest adhesion rate accompanying relatively small velocities. The arrest of cells on the glass surface is either permanent or temporary and in a certain range of fluid velocities numerous cells are arrested several times consecutively for brief periods. Two types of surface attachment may be distinguished: cells are either totally immobilized on the surface (firm adhesion) or are able to perform under the influence of the fluid impulses some movements around the attachment site (loose adhesion). When the adherent cells are subjected to the shearing force of rapidly flowing fluid, they detach from the surface, the tearing away being frequently preceded by an accelerating gliding movement. The influence of hydrodynamic forces on the cell-surface interaction and adhesion processes is discussed, as well as some problems concerning possible mechanisms of the cell binding to the surface under dynamic conditions.  相似文献   

18.
A stable connection between the biomaterial surface and the surrounding tissue is one of the most important prerequisites for the long-term success of implants. Therefore, a strong adhesion of the cells on the biomaterial surface is required. Beside the surface composition the surface topography influences the properties of the adherent cells. The quality of the connection between the cell and the biomaterial is-among other factors-determined by the dimensions of the surface topography. Osteoblasts and fibroblast-like cells in contact with a ground biomaterial surface spread in the direction of the surface structures. These aligned cells provide a more favourable adhesion behaviour than a spherically shaped cell. To determine the influence of the surface structure on the cell alignment and cytoskeleton organisation or arrangement, substrate discs of cp-titanium were ground, producing different roughness of the substrates. The oriented cells had a higher density of focal contacts when they were in contact with the edges of the grooves and showed a better organisation of the cytoskeleton and stronger actin fibres. These changes of the aligned cells depend on the peak to valley height of the surface structures.  相似文献   

19.
The influence of the physicochemical properties of biomaterials on microbial cell adhesion is well known, with the extent of adhesion depending on hydrophobicity, surface charge, specific functional groups and acid–base properties. Regarding yeasts, the effect of cell surfaces is often overlooked, despite the fact that generalisations may not be made between closely related strains. The current investigation compared adhesion of three industrially relevant strains of Saccharomyces cerevisiae (M-type, NCYC 1681 and ALY, strains used in production of Scotch whisky, ale and lager, respectively) to the biomaterial hydroxylapatite (HAP). Adhesion of the whisky yeast was greatest, followed by the ale strain, while adhesion of the lager strain was approximately 10-times less. According to microbial adhesion to solvents (MATS) analysis, the ale strain was hydrophobic while the whisky and lager strains were moderately hydrophilic. This contrasted with analyses of water contact angles where all strains were characterised as hydrophilic. All yeast strains were electron donating, with low electron accepting potential, as indicated by both surface energy and MATS analysis. Overall, there was a linear correlation between adhesion to HAP and the overall surface free energy of the yeasts. This is the first time that the relationship between yeast cell surface energy and adherence to a biomaterial has been described.  相似文献   

20.
Mesenchymal stem cells (MSCs) have a differentiation potential towards osteoblastic lineage when they are stimulated with soluble factors or specific biomaterials. This work presents a novel option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) that employs bovine bone matrix Nukbone (NKB) as a scaffold. Thus, the application of MSCs in repair and tissue regeneration processes depends principally on the efficient implementation of the techniques for placing these cells in a host tissue. For this reason, the design of biomaterials and cellular scaffolds has gained importance in recent years because the topographical characteristics of the selected scaffold must ensure adhesion, proliferation and differentiation into the desired cell lineage in the microenvironment of the injured tissue. This option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) employs bovine bone matrix as a cellular scaffold and is an efficient culture technique because the cells respond to the topographic characteristics of the bovine bone matrix Nukbone (NKB), i.e., spreading on the surface, macroporous covering and colonizing the depth of the biomaterial, after the cell isolation process. We present the procedure for isolating and culturing MSCs on a bovine matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号