首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that atrial natriuretic peptide (ANP) has a direct vasodilator effect on the pulmonary vasculature that is enhanced in hypoxia-induced pulmonary hypertension in the rat, we determined the effects of ANP on mean pulmonary (MPAP) and systemic arterial pressure (MSAP) in intact conscious Sprague-Dawley rats exposed to 10% O2 or room air for 4 wk. Catheters were placed in the pulmonary artery through the right jugular vein by means of a closed-chest technique. MPAP and MSAP were monitored before and after intravenous injections of graded doses of ANP. ANP produced dose-related decreases in MPAP that were greater in the hypoxic group than in air controls. There were no significant between-group differences in the systemic depressor responses to ANP or in the ANP-induced reduction in cardiac output. ANP lowered MPAP significantly in isolated perfused lungs from both hypoxia-adapted and air control rats, and this effect was significantly greater in the hypoxic than the air control lungs. These data indicate that ANP lowers pulmonary arterial pressure in rats with hypoxia-induced pulmonary hypertension, mainly by a direct vasodilator effect on the pulmonary vasculature.  相似文献   

2.
To test the hypothesis that exogenous atrial natriuretic peptide (ANP) prevents the acute pulmonary pressor response to hypoxia, ANP (20-micrograms/kg bolus followed by 1-microgram.kg-1.min-1 infusion) or vehicle was administered intravenously to conscious rats beginning 3 min before exposure to hypoxia or room air for 90 min. Exogenous ANP abolished the acute pulmonary pressor response to hypoxia in association with marked and parallel increases in plasma ANP and guanosine 5'-cyclic monophosphate (cGMP) and with a significant increase in lung cGMP content. To examine whether endogenous ANP modulates the acute pulmonary pressor response to hypoxia, rats were pretreated with a monoclonal antibody (Ab) to ANP and exposed to hypoxia. Mean pulmonary arterial pressure (MPAP) in the Ab-treated rats was not different from control over the first 6 h of hypoxic exposure. Thereafter, the Ab-treated group had significantly higher MPAP than control. Our data suggest that 1) exogenous ANP blocks the pulmonary pressor response to acute hypoxia via stimulation of cGMP accumulation in the pulmonary vasculature, and 2) endogenous ANP may modulate the subacute, but not acute, phase of hypoxic pulmonary hypertension.  相似文献   

3.
Acute and chronic pulmonary and systemic hemodynamic responses to arginine vasopressin (AVP) were examined in 4-wk hypoxia-adapted and air control rats. AVP, administered intravenously as bolus injections or sustained infusions, produced major dose-dependent V1-receptor-mediated reductions in mean pulmonary arterial pressure in hypoxia-adapted rats. These effects were comparable in pentobarbital-anesthetized, thoracotomized animals and in conscious, intact rats. Chronic infusions of AVP induced a sustained reduction in mean pulmonary arterial pressure and partially prevented the development of pulmonary hypertension without changing systemic arterial pressure. AVP induced significant decreases in cardiac output in both groups; the cardiac output response was not significantly different in hypoxia-adapted and air control animals. AVP induced almost no change in MPAP in air control rats. Furthermore the systemic pressor effects of AVP were significantly blunted in hypoxia-adapted rats compared with air controls. We conclude that the pulmonary depressor and blunted systemic pressor effects of AVP observed in hypoxia-adapted rats may be related to release of a vasodilator, such as endothelium-derived relaxing factor, vasodilator prostaglandins, or atrial natriuretic peptides. Further study is needed to elucidate these mechanisms and assess the usefulness of AVP and/or its analogues in the treatment and prevention of hypoxia-induced pulmonary hypertension.  相似文献   

4.
Chen YF  Feng JA  Li P  Xing D  Ambalavanan N  Oparil S 《Life sciences》2006,79(14):1357-1365
Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. Measurement: pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.  相似文献   

5.
We tested the hypotheses that hypoxic exposure is associated with exacerbated pulmonary hypertension and right ventricular (RV) enlargement, reduced atrial natriuretic peptide (ANP) clearance receptor (NPR-C) expression, and enhanced B-type natriuretic peptide (BNP) expression in the absence of ANP. Male wild-type [ANP(+/+)], heterozygous [ANP(+/-)], and homozygous [ANP(-/-)] mice were studied after a 5-wk hypoxic exposure (10% O(2)). Hypoxia increased RV ANP mRNA and plasma ANP levels only in ANP(+/+) and ANP(+/-) mice. Hypoxia-induced increases in RV pressure were significantly greater in ANP(-/-) than in ANP(+/+) or ANP(+/-) mice (104 +/- 17 vs. 45 +/- 10 and 63 +/- 7%, respectively) as were increases in RV mass (38 +/- 4 vs. 26 +/- 5 and 29 +/- 4%, respectively). NPR-C mRNA levels were greatly reduced in the kidney, lung, and brain by hypoxia in all three genotypes. RV BNP mRNA and lung and kidney cGMP levels were increased in hypoxic mice. These findings indicate that disrupted ANP expression worsens hypoxic pulmonary hypertension and RV enlargement but does not alter hypoxia-induced decreases in NPR-C and suggest that compensatory increases in BNP expression occur in the absence of ANP.  相似文献   

6.
Hypoxic pulmonary vasoconstriction (HPV) is encountered during ascent to high altitude. Atrial natriuretic peptide (ANP) could be an option to treat HPV because of its natriuretic, diuretic, and vasodilatory properties. Data on effects of ANP on pulmonary and systemic circulation during HVP are conflicting, partly owing to anesthesia, surgical stress or uncontrolled dietary conditions. Therefore, ten conscious, chronically tracheotomized dogs were studied under standardized dietary conditions. The dogs were trained to breathe spontaneously at a ventilator circuit. Protocol: 30min of normoxia [inspiratory oxygen fraction (F(i)O(2))=0.21] were followed by 30min of hypoxia without ANP infusion (Hypoxia I, F(i)O(2)=0.1). While maintaining hypoxia an intravenous infusion of atrial natriuretic peptide was started with 50ng x kg body wt(-1) x min(-1) for 30min (Hypoxia+ANP1=low dose), followed by 1000ng x kg body wt(-1) x min(-1) for 30min (Hypoxia+ANP2=high dose). Thereafter, ANP infusion was stopped and hypoxia maintained for a final 30min (Hypoxia II). Compared to normoxia, mean pulmonary arterial pressure (MPAP) (16+/-0.7 vs. 26+/-1.3mmHg) and pulmonary vascular resistance (PVR) (448+/-28 vs. 764+/-89dyn x s(-1) x cm(-5)) increased during Hypoxia I and decreased during Hypoxia+ANP 1 (MPAP 20+/-1mmHg, PVR 542+/-55dyn x s(-1) x cm(-5)) (P<0.05). The higher dose of ANP did not further decrease MPAP or PVR, but started to have a tendency to decrease mean arterial pressure and cardiac output. We conclude that low dose ANP is able to reduce HPV without affecting systemic circulation during acute hypoxia.  相似文献   

7.
We have previously found that chronic infusion of atrial natriuretic peptide (ANP) decreased mean arterial pressure (MAP) by 16% in two-kidney, one-clip (2K-1C) hypertensive rats, and we hypothesized that natriuresis might be modified through the pressure-natriuresis mechanism. We therefore decided to evaluate sodium balance in 2K-1C rats infused with ANP (0.5 micrograms/h for 4 days). The ANP infusion to the 2K-1C rats induced a significant decrease in MAP from 171 +/- 3 to a minimum value of 147 +/- 6 mm Hg after 2 days of treatment (p less than 0.001). Sodium excretion fell from 2,536 +/- 60 to 2,047 +/- 86 (p less than 0.001) and 2,211 +/- 96 mu Eq/24 h (p less than 0.05) by days 1 and 2 of ANP administration. Furthermore, fractional excretion of sodium intake decreased from 99.1 +/- 1.5 to 81.1 +/- 2.9 (p less than 0.001), 84.1 +/- 2.6 (p less than 0.05) and 85.9 +/- 5.15% (p less than 0.05) by days 1, 2 and 3 of ANP infusion, respectively, returning to basal values thereafter. The administration of vehicle (0.9% NaCl) did not induce any significant change in 2K-1C hypertensive rats. The infusion of either vehicle or the same dose of ANP to normotensive rats (0.5 micrograms/h, for 4 days) did not modify sodium balance throughout the experiment. These results strongly suggest that the ANP-induced decrease in MAP might be responsible for the transitory sodium retention observed in 2K-1C hypertensive rats during the administration of the peptide.  相似文献   

8.
Chronic hypoxia (CH) increases pulmonary endothelial nitric oxide synthase (eNOS) protein levels in adult rats but decreases eNOS protein levels in neonatal pigs. We hypothesized that this differing response to CH is due to developmental rather than species differences. Adult and neonatal rats were placed in either hypobaric hypoxia or normoxia for 2 wk. At that time, body weight, hematocrit, plasma nitrite/nitrate (NOx(-)), and right ventricular and total ventricular heart weights were measured. Percent pulmonary arterial wall area of 20-50 and 51-100 microm arteries were also determined. Total lung protein extracts were assayed for eNOS levels by using immunoblot analysis. Compared with their respective normoxic controls, both adult and neonatal hypoxic groups demonstrated significantly decreased body weight, elevated hematocrit, and elevated right ventricular-to-total ventricular weight ratios. Both adult and neonatal hypoxic groups also demonstrated significantly larger percent pulmonary arterial wall area compared with their respective normoxic controls. Hypoxic adult pulmonary eNOS protein and plasma NOx(-) were significantly greater than levels found in normoxic adults. In contrast, hypoxic neonatal pulmonary eNOS protein and plasma NOx(-) were significantly less compared with normoxic neonates. We conclude that there is a developmental difference in eNOS expression and nitric oxide production in response to CH.  相似文献   

9.
To elucidate the involvement of the brain renin-angiotensin system and the brain atrial natriuretic polypeptide (ANP) system in the regulation of ANP secretion from the heart, the effects of intracerebroventricular administration of angiotensin II and ANP on the plasma ANP level were examined in conscious unrestrained rats. The intracerebroventricular administration of angiotensin II at doses of 100 ng and 1 microgram significantly enhanced ANP secretion induced by volume-loading with 3-mL saline infusion (peak values of the plasma ANP level: control, 220 +/- 57 pg/mL; 100 ng angiotensin II, 1110 +/- 320 pg/mL, p less than 0.01; 1 microgram angiotensin II, 1055 +/- 60 pg/mL, p less than 0.01). The intracerebroventricular injection of angiotensin II at the same doses alone had no significant effect on the basal plasma ANP level. The enhancing effect of central angiotensin II on ANP secretion induced by volume-loading was significantly attenuated by pretreatment with the intravenous administration of the V1-receptor antagonist of vasopressin or with the intracerebroventricular administration of phentolamine. The intracerebroventricular administration of alpha-rANP(4-28) (5 micrograms) had no significant influence on the basal plasma ANP level; however, it significantly attenuated central angiotensin II potentiating effect of volume-loading induced ANP secretion. These results indicate that the brain renin-angiotensin system regulates ANP secretion via the stimulation of vasopressin secretion and (or) via the activation of the central alpha-adrenergic neural pathway, and that the brain ANP system interacts with the brain renin-angiotensin system in the central modulation of ANP secretion from the heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We investigated the effects of the nitric oxide (NO) donor molsidomine and the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) on pulmonary endothelin (ET)-1 gene expression and ET-1 plasma levels in chronic hypoxic rats. Two and four weeks of hypoxia (10% O2) significantly increased right ventricular systolic pressure, the medial cross-sectional vascular wall area of the pulmonary arteries, and pulmonary ET-1 mRNA expression (2-fold and 3.2-fold, respectively). ET-1 plasma levels were elevated after 4 wk of hypoxia. In rats exposed to 4 wk of hypoxia, molsidomine (15 mg x kg(-1) x day(-1)) given either from the beginning or after 2 wk of hypoxia significantly reduced pulmonary hypertension, pulmonary vascular remodeling, pulmonary ET-1 gene expression, and ET-1 plasma levels. L-NAME administration (45 mg x kg(-1) x day(-1)) in rats subjected to 2 wk of hypoxia did not modify these parameters. Our findings suggest that in chronic hypoxic rats, exogenously administered NO acts in part by suppressing the formation of ET-1. In contrast, inhibition of endogenous NO production exerts only minor effects on the pulmonary circulation and pulmonary ET-1 synthesis in these animals.  相似文献   

11.
Pepsanurin is a peptidic fraction resulting from pepsin digestion of plasma globulins, that inhibits ANP renal excretory actions. We studied whether kinin-like peptides mediate the anti-ANP effect by testing if pepsanurin: 1) was blocked by the kinin B2 receptor antagonist HOE-140, 2) was produced from kininogen, and 3) was mimicked by bradykinin. Anti-ANP activity was assessed in anesthetized female rats by comparing the excretory response to two ANP boluses (0.5 microgram i.v.) given before and after i.p. injection of test samples. Pepsanurin from human or rat plasma (1-5 mL/kg), and bradykinin (5-20 micrograms/kg), dose-relatedly inhibited ANP-induced water, sodium, potassium and cyclic GMP urinary excretion, without affecting arterial blood pressure. The same effect was exerted by pepsin hydrolysates of purified kininogen, whereas hydrolysates of kininogen-free plasma had no effect. HOE-140 (5 micrograms, i.v.) did not alter baseline, or ANP-induced excretion, but blocked the anti-ANP effects of pepsanurin. Histamine (15 micrograms/kg) plus seroalbumin hydrolysates did not affect ANP response, despite inducing larger peritoneal fluid accumulation as compared with pepsanurin or bradykinin. We concluded that kinins cleaved from kininogen mediate the anti-ANP effects of pepsanurin by activation of kinin B2 receptors, independently of changes in systemic arterial pressure or peritoneal fluid sequestration.  相似文献   

12.
Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats   总被引:1,自引:0,他引:1  
Brainnatriuretic peptide (BNP) is a pulmonary vasodilator that is elevatedin the right heart and plasma of hypoxia-adapted rats. To test thehypothesis that BNP protects against hypoxic pulmonary hypertension, wemeasured right ventricular systolic pressure (RVSP), right ventricle(RV) weight-to-body weight (BW) ratio (RV/BW), and percentmuscularization of peripheral pulmonary vessels (%MPPV) in rats givenan intravenous infusion of BNP, atrial natriuretic peptide (ANP), orsaline alone after 2 wk of normoxia or hypobaric hypoxia (0.5 atm).Hypoxia-adapted rats had higher hematocrits, RVSP, RV/BW, and %MPPVthan did normoxic controls. Under normoxic conditions, BNP infusion(0.2 and 1.4 µg/h) increased plasma BNP but had no effect on RVSP,RV/BW, or %MPPV. Under hypoxic conditions, low-rate BNP infusion (0.2 µg/h) had no effect on plasma BNP or on severity of pulmonaryhypertension. However, high-rate BNP infusion (1.4 µg/h) increasedplasma BNP (69 ± 8 vs. 35 ± 4 pg/ml, P < 0.05),lowered RV/BW (0.87 ± 0.05 vs. 1.02 ± 0.04, P < 0.05), and decreased %MPPV (60 vs. 74%,P < 0.05). There was also a trend towardlower RVSP (55 ± 3 vs. 64 ± 2, P = not significant).Infusion of ANP at 1.4 µg/h increased plasma ANP in hypoxic rats (759 ± 153 vs. 393 ± 54 pg/ml, P < 0.05) but had noeffect on RVSP, RV/BW, or %MPPV. We conclude that BNP may regulatepulmonary vascular responses to hypoxia and, at the doses used in thisstudy, is more effective than ANP at blunting pulmonary hypertensionduring the first 2 wk of hypoxia.

  相似文献   

13.
Systemic and pulmonary vascular reactivity to graded doses of angiotensin I (ANG I), angiotensin II (ANG II), and, as a control, phenylephrine were examined in 14- or 28-day hypoxia-exposed and air control rats. Hypoxic rats exhibited pulmonary hypertension that was reversible on return to room air, but systemic arterial pressure was not altered by hypoxia. Systemic pressor responses to ANG I and ANG II were significantly less in the hypoxic rats than in the control rats at 14 and 28 days but returned to control levels in hypoxic animals that were then returned to room air, demonstrating reversibility of the hypoxia-induced changes in vascular reactivity. Pulmonary pressor responses to ANG I were significantly less at 14 days, whereas responses to ANG II were significantly greater at 28 days, in hypoxic rats than in controls. There were no significant differences in systemic and pulmonary pressor responses to phenylephrine between the hypoxic and air control animals. The altered systemic and pulmonary pressor responsiveness to ANG I and ANG II in hypoxic rats is probably related to mechanisms specific to the renin-angiotensin system, such as inhibition of intrapulmonary angiotensin-converting enzyme activity and down regulation of ANG II receptors in the systemic circulation. Further study is needed to elucidate these mechanisms.  相似文献   

14.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of synthetic atrial natriuretic peptide (ANP) was examined on the in vivo and in vitro release of ACTH. Intravenous ANP (4 micrograms/kg body weight) administration did not affect the corticotropin releasing factor (CRF, 4 micrograms/kg body weight)-, arginine vasopressin (AVP, 2 micrograms/kg body weight)- and angiotensin II (A II, 4 micrograms/kg body weight)-induced ACTH release in unanesthetized freely moving rats. ANP did not inhibit the basal, CRF- and AVP-induced release of ACTH in pituitary cell cultures. ANP did not affect the CRF- and AVP-induced plasma corticosterone elevation, while it attenuated the AVP-induced corticosterone elevation. These results indicate that ANP does not affect the ACTH release at the pituitary level in vivo and in vitro.  相似文献   

16.
Inhalation of endothelin (ET)-A receptor antagonists has been shown to improve gas exchange in experimental acute lung injury (ALI) but may induce side effects by increasing circulating ET-1 levels. We investigated whether the inhaled ET(A) receptor antagonist, LU-135252, at low doses, improves gas exchange without affecting ET-1 plasma concentrations and lung injury in an animal model of ALI. Twenty-two piglets were examined in a prospective, randomized, controlled study. In anesthetized animals, ALI was induced by surfactant depletion. Animals received either LU-135252 at a dose of 0.3 mg/kg during 20 mins (LU group; n = 11), or nebulization of saline buffer (control group; n = 11). The Mann-Whitney U test was used to compare groups (P < 0.05). In the LU group, arterial partial pressure of oxygen (PaO2) and mean pulmonary artery pressure (MPAP) improved compared with the control group (PaO2, 319 +/- 44 mm Hg vs. 57 +/- 3 mm Hg; MPAP, 32 +/- 2 mm Hg vs. 41 +/- 2 mm Hg; values at 6 hrs after induction of ALI; P < 0.05). Mean arterial pressure and cardiac output were not different between groups. ET-1 plasma concentrations increased from 0.96 +/- 0.06 fmol/ml after induction of ALI to a maximum of 1.17 +/- 0.09 fmol/ml at 3 hrs after ALI onset in the LU group and did not differ significantly from the control group (1.21 +/- 0.08 fmol/ml, not significant). On histologic examination, we found no differences in total lung injury score between groups. However, the LU group revealed significantly reduced interstitial inflammation and hemorrhage (P < 0.05 vs. control group). In this animal model of ALI, inhalation of LU-135252 at a dose of 0.3 mg/kg induced a significant and sustained improvement in gas exchange, whereas there were no changes in ET-1 plasma concentrations. Furthermore, our data indicate a trend toward decreased pulmonary inflammation in the group receiving the inhaled ET(A) receptor antagonist.  相似文献   

17.
Daily administration of propranolol to 9 chronically instrumented, trained dogs for 2 weeks caused significant (p less than 0.05) decreases in heart rate (70 +/- 8 to 57 +/- 6 beats/min), cardiac output (3.6 +/- 0.3 to 2.9 +/- 0.2 liters/min), pulmonary arterial pressure (15.7 +/- 0.5 to 10.0 +/- 0.5 mm Hg) and total pulmonary vascular resistance (4.6 +/- 0.6 to 3.3 +/- 0.4 units). Nadolol, a structurally dissimilar beta-adrenergic receptor antagonist, caused a similar decrease in total pulmonary resistance. Acute meclofenamate administration did not return to normal pulmonary arterial pressure and resistance in the dogs chronically treated with beta-adrenergic receptor blockers. We therefore conclude that chronic beta-adrenergic receptor blockade lowered pulmonary arterial pressure and resistance by a mechanism independent of cyclooxygenase. In addition, chronic beta-adrenergic receptor blockade did not affect the potential for hypoxic vasoconstriction.  相似文献   

18.
Zhang M  Tao Y  Xia G  Xie H  Hong H  Wang F  Lei L 《Theriogenology》2005,64(4):902-916
This study examined the effect of atrial natriuretic peptide (ANP) on porcine cumulus-enclosed oocyte (CEO) maturation and cumulus expansion. ANP negatively regulated follicle-stimulating hormone (FSH)-stimulated germinal vesicle breakdown (GVBD; 90.1, 81.2 and 68.2% for FSH, FSH+10nM ANP and FSH+1 microM ANP, respectively), first polar body emission (PB1; 86.1, 75.3 and 53.3% for FSH, FSH+1 nM ANP and FSH+1 microM ANP, respectively) and cumulus expansion (CEI; 3.47, 3.16 and 2.43 for FSH, FSH+1 nM ANP and FSH+1 microM ANP, respectively) in a dose-dependent manner when CEOs were cultured in the maturation medium containing porcine follicular fluid (pFF). This negative effect showed a time-dependent manner after preincubation with 100 nM ANP for 5h (78.4% PB1), 10h (81.7% GVBD and 74.1% PB1), 20 h (78.5% GVBD and 68.9% PB1), and 44 h (75.3% GVBD and 60.5% PB1), respectively. ANP also significantly inhibited FSH-induced porcine oocyte GVBD (47.6% versus 83.8%) and PB1 emission (22.4% versus 45.2%) when CEOs were cultured in pFF-free maturation medium. cGMP analog 8-Br-cGMP (10 microM to 1mM) mimicked the effects of ANP on GVBD, PB1, and CEI. The negative effect of ANP was completely reversed by KT5823 (a specific inhibitor of cGMP-dependent protein kinase), while C-ANP-(4-23) (an analogue of ANP and specific binder for natriuretic peptide receptors-C) was ineffective in oocyte maturation. Neither ANP nor C-ANP-(4-23) had an effect on spontaneous porcine oocyte maturation and cumulus expansion. These results suggested that ANP negatively regulates FSH-activated porcine oocyte meiotic resumption, meiotic maturation and cumulus expansion. The function of ANP on porcine oocyte maturation is via the cGMP dependent protein kinase (PKG) pathway.  相似文献   

19.
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.  相似文献   

20.
In order to determine whether the activity of central alpha 2-adrenergic and opioid receptors influence plasma atrial natriuretic peptide (ANP) levels, clonidine and morphine were infused into the lateral cerebral ventricle for 45 min in anesthetized Sprague-Dawley rats. The central administration of a low dose of clonidine (10 ng/min) caused a significant increase in plasma ANP without changing arterial blood pressure or central venous pressure. Pretreatment with yohimbine (5 micrograms/min) completely blocked the effect of clonidine. Central infusion of morphine (100 ng/min) also elevated plasma ANP levels and naloxone (5 micrograms/min) blunted this effect. Intravenous infusion of the same dose of clonidine or morphine did not affect plasma ANP levels. Moreover, the effect of clonidine on plasma ANP was partially blocked by pretreatment with naloxone (5 micrograms/min). These results suggest that central alpha 2-adrenergic and opioid receptors may be involved in ANP secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号