共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of spliceosomal U-rich small nuclear ribonucleoproteins (U snRNPs) is an ATP-dependent process mediated by the coordinated action of the SMN and the PRMT5 complex. Here, we provide evidence that the activity of this assembly machinery is regulated by means of post-translational modification. We show that two main components of the SMN/PRMT5 system, namely the survival motor neuron (SMN) protein (reduced levels thereof causing spinal muscular atrophy) and pICln, are phosphorylated in vivo. Both proteins share a previously unknown motif containing either one or two phosphoserines. Alteration of these residues in SMN (serines 28 and 31) significantly impairs the activity of the SMN complex. Despite the presence of SMN in both the nucleus and cytoplasm, we find that only the latter promotes efficient SMN-mediated U snRNP assembly activity. As cytoplasmic SMN is phosphorylated to a much larger extent, we hypothesize that this modification is a key activator of the SMN complex. 相似文献
2.
Deciphering the assembly pathway of Sm-class U snRNPs 总被引:1,自引:0,他引:1
The assembly of the Sm-class of uridine-rich small nuclear ribonucleoproteins (U snRNPs), albeit spontaneous in vitro, has recently been shown to be dependent on the aid of a large number of assisting factors in vivo. These factors are organized in two interacting units termed survival motor neuron (SMN)- and protein arginine methyltransferase 5 (PRMT5)-complexes, respectively. While the PRMT5-complex acts early in the assembly pathway by activating common proteins of U snRNPs, the SMN-complex functions to join proteins and RNA in a highly ordered, apparently regulated manner. Here, we summarize recent progress in the understanding of this process and discuss the influence exerted by the aforementioned trans-acting factors. 相似文献
3.
Specific sequence features, recognized by the SMN complex, identify snRNAs and determine their fate as snRNPs
下载免费PDF全文

The survival of motor neurons (SMN) complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) as it binds to and delivers Sm proteins for assembly of Sm cores on the abundant small nuclear RNAs (snRNAs). Using the conserved snRNAs encoded by the lymphotropic Herpesvirus saimiri (HVS), we determined the specific sequence and structural features of RNAs for binding to the SMN complex and for Sm core assembly. We show that the minimal SMN complex-binding domain in snRNAs, except U1, is comprised of an Sm site (AUUUUUG) and an adjacent 3' stem-loop. The adenosine and the first and third uridines of the Sm site are particularly critical for binding of the SMN complex, which directly contacts the backbone phosphates of these uridines. The specific sequence of the adjacent stem (7 to 12 base pairs)-loop (4 to 17 nucleotides) is not important for SMN complex binding, but it must be located within a short distance of the 3' end of the RNA for an Sm core to assemble. Importantly, these defining characteristics are discerned by the SMN complex and not by the Sm proteins, which can bind to and assemble on an Sm site sequence alone. These findings demonstrate that the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells because it is able to recognize an snRNP code that they contain. 相似文献
4.
The SMN complex 总被引:7,自引:0,他引:7
The survival of motor neurons (SMN) protein is the product of the disease-determining gene of the neurodegenerative disorder spinal muscular atrophy (SMA). SMN is part of a stable multiprotein complex that is found in all metazoan cells in the cytoplasm and in nuclear Gems. The SMN complex contains, in addition to SMN, at least six other proteins, named Gemins2-7, and plays an essential role in the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Through its binding to specific sequences in the snRNAs, the SMN complex surveys the correct identity of the target RNAs and facilitates snRNP assembly. Based on its ability to interact with several other protein and RNA components of cellular RNPs, it is likely that the SMN complex functions as an assemblyosome in the formation of diverse RNP particles, some of which may be of particular importance to the motor neuron. A detailed understanding of the cellular roles of the SMN complex may help the development of therapeutic strategies for this neurodegenerative disease. 相似文献
5.
Chari A Golas MM Klingenhäger M Neuenkirchen N Sander B Englbrecht C Sickmann A Stark H Fischer U 《Cell》2008,135(3):497-509
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders. 相似文献
6.
7.
Azzouz TN Pillai RS Däpp C Chari A Meister G Kambach C Fischer U Schümperli D 《The Journal of biological chemistry》2005,280(41):34435-34440
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction. Here, we provide evidence that Lsm10 and Lsm11, which replace the Sm proteins D1 and D2 in the histone RNA processing U7 snRNPs, associate with pICln in vitro and in vivo without receiving sDMA modifications. This implies that the PRMT5 complex is involved in an early stage of U7 snRNP assembly and hence may have a second snRNP assembly function unrelated to sDMA modification. We also show that the binding of Lsm10 and Lsm11 to SMN is independent of any methylation activity. Furthermore, we present evidence for two separate binding sites in SMN for Sm/Lsm proteins. One recognizes Sm domains and the second one, the sDMA-modified RG-tails, which are present only in a subset of these proteins. 相似文献
8.
The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly 总被引:2,自引:0,他引:2
下载免费PDF全文

Eukaryotic cilia are assembled via intraflagellar transport (IFT) in which large protein particles are motored along ciliary microtubules. The IFT particles are composed of at least 17 polypeptides that are thought to contain binding sites for various cargos that need to be transported from their site of synthesis in the cell body to the site of assembly in the cilium. We show here that the IFT20 subunit of the particle is localized to the Golgi complex in addition to the basal body and cilia where all previous IFT particle proteins had been found. In living cells, fluorescently tagged IFT20 is highly dynamic and moves between the Golgi complex and the cilium as well as along ciliary microtubules. Strong knock down of IFT20 in mammalian cells blocks ciliary assembly but does not affect Golgi structure. Moderate knockdown does not block cilia assembly but reduces the amount of polycystin-2 that is localized to the cilia. This work suggests that IFT20 functions in the delivery of ciliary membrane proteins from the Golgi complex to the cilium. 相似文献
9.
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm. 相似文献
10.
Carissimi C Baccon J Straccia M Chiarella P Maiolica A Sawyer A Rappsilber J Pellizzoni L 《FEBS letters》2005,579(11):2348-2354
A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly. 相似文献
11.
12.
The t complex polypeptide 1 (TCP-1) is associated with the cytoplasmic aspect of Golgi membranes 总被引:15,自引:0,他引:15
K Willison V Lewis K S Zuckerman J Cordell C Dean K Miller M F Lyon M Marsh 《Cell》1989,57(4):621-632
The t complex polypeptide 1 (TCP-1) is a protein of unknown function expressed in large amounts during spermatogenesis. Rat monoclonal antibodies recognizing TCP-1 have been prepared and used to immunoprecipitate and Western blot a 57 kd protein from germ cell and tissue culture cell extracts. In tissue culture cells, indirect immunofluorescent localization of antigen indicated a perinuclear distribution similar to that of the Golgi apparatus. Analysis of the TCP-1 distribution in tissue culture cells showed that the polypeptide was associated with the cytoplasmic aspect of membranes of the trans-Golgi network (TGN). The distribution in spermatids suggested that TCP-1 was localized to structures often associated with the developing acrosome. The TCP-1 antigenic epitopes are highly conserved, allowing the protein to be identified in cells across a wide variety of vertebrate species and tissues. These experiments suggest that TCP-1 may be essential for transport of proteins through the exocytic pathway in all cells and required in large amounts for acrosome formation in developing spermatids. 相似文献
13.
Capell A Beher D Prokop S Steiner H Kaether C Shearman MS Haass C 《The Journal of biological chemistry》2005,280(8):6471-6478
gamma-Secretase is an aspartyl protease complex composed of the four core components APH-1, nicastrin (NCT), presenilin (PS), and PEN-2. It catalyzes the final intramembranous cleavage of the beta-secretase-processed beta-amyloid precursor protein to liberate the neurotoxic amyloid beta-peptide. Whereas unassembled complex components appear to be unstable and/or to be retained within the endoplasmic reticulum (ER), the fully assembled complex is known to exert its biological function in late secretory compartments, including the plasma membrane. We thus hypothesized that the gamma-secretase complex undergoes a stepwise assembly within the ER. We demonstrate that gamma-secretase-associated NCT can be actively retained within the ER by the addition of a retention signal. Under these conditions, complex assembly occurred in the absence of maturation of NCT, and ER-retained immature NCT associated with APH-1, PEN-2, and PS fragments. Moreover, a biotinylated transition state gamma-secretase inhibitor allowed the preferential isolation of the fully assembled complex containing immature NCT. Furthermore, we observed a conformational change in immature NCT, which is known to be selectively associated with complete gamma-secretase complex assembly. This was also observed for a small amount of immature endogenous NCT. ER-retained NCT also rescued the biochemical phenotype observed upon RNA interference-mediated NCT knockdown, viz. reduced amyloid beta-peptide production; instability of PS, PEN-2, and APH-1; and accumulation of beta-amyloid precursor protein C-terminal fragments. Finally, we demonstrate that dimeric (NCT/APH-1) and trimeric (NCT/APH-1/PS) intermediates of gamma-secretase complex assembly containing endogenous NCT are retained within the ER and that the incorporation of the fourth and last binding partner (PEN-2) also occurs on immature NCT, suggesting a complete assembly of the gamma-secretase complex within the ER. 相似文献
14.
The SMN complex,an assemblyosome of ribonucleoproteins 总被引:20,自引:0,他引:20
Spinal muscular atrophy is a common, often lethal, neurodegenerative disease that results from low levels of, or loss-of-function mutations in, the SMN (survival of motor neurons) protein. SMN oligomerizes and forms a stable complex with five additional proteins: Gemins 2-6. SMN also interacts with several additional proteins referred to as "substrates". Most of these substrates contain a domain enriched in arginine and glycine residues (the RG-rich domain), and are constituents of different ribonucleoprotein complexes. Recent studies revealed that the substrates can be modified by an arginine methyltransferase complex, the methylosome. This forms symmetrical dimethylarginines within the RG-rich domains of the substrates, thereby converting them to high-affinity binders of the SMN complex, and most likely providing regulation of the ribonucleoprotein assembly processes. 相似文献
15.
Jonathan P Giblin Kathryn Quinn Andrew Tinker 《European journal of biochemistry》2002,269(21):5303-5313
ATP-sensitive K+ channels are an octameric assembly of two proteins, a sulfonylurea receptor (SUR1) and an ion conducting subunit (Kir 6.0). We have examined the role of the C-terminus of SUR1 by expressing a series of truncation mutants together with Kir6.2 stably in HEK293 cells. Biochemical analyses using coimmunoprecipitation indicate that SUR1 deletion mutants and Kir6.2 assemble and that a SUR1 deletion mutant binds glibenclamide with high affinity. Electrophysiological recordings indicate that ATP sensitivity is normal but the response of the mutant channel complexes to tolbutamide, MgADP and diazoxide is disturbed. Quantitative immunofluorescence and cell surface biotinylation supports the idea that there is little disturbance in the efficiency of trafficking. Our data show that deletions of the C-terminal most cytoplasmic domain of SUR1, can result in functional channels at the plasma membrane in mammalian cells that have an abnormal response to physiological and pharmacological agents. 相似文献
16.
The survival of motor neurons (SMN) complex is essential for the biogenesis of small nuclear ribonucleoprotein (snRNP) complexes in eukaryotic cells. Reduced levels of SMN cause the motor neuron degenerative disease, spinal muscular atrophy. We identify here stable subunits of the SMN complex that do not contain SMN. Sedimentation and immunoprecipitation experiments using cell extracts reveal at least three complexes composed of Gemin3, -4, and -5; Gemin6, -7, and unrip; and SMN with Gemin2, as well as free Gemin5. Complexes containing Gemin3-Gemin4-Gemin5 and Gemin6-Gemin7-unrip persist at similar levels when SMN is reduced. In cells, immunofluorescence microscopy shows differential localization of Gemin5 after cell stress. We further show that the Gemin5-containing subunits bind small nuclear RNA independently of the SMN complex and without a requirement for exogenous ATP. ATP hydrolysis is, however, required for displacement of small nuclear RNAs from the Gemin5-containing subunits and their assembly into snRNPs. These findings demonstrate a modular nature of the SMN complex and identify a new intermediate in the snRNP assembly process. 相似文献
17.
Florence Rage Nawal Boulisfane Khalil Rihan Henry Neel Thierry Gostan Edouard Bertrand Rémy Bordonné Johann Soret 《RNA (New York, N.Y.)》2013,19(12):1755-1766
Spinal muscular atrophy is a neuromuscular disease resulting from mutations in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. SMN is part of a large complex that is essential for the biogenesis of spliceosomal small nuclear RNPs. SMN also colocalizes with mRNAs in granules that are actively transported in neuronal processes, supporting the hypothesis that SMN is involved in axonal trafficking of mRNPs. Here, we have performed a genome-wide analysis of RNAs present in complexes containing the SMN protein and identified more than 200 mRNAs associated with SMN in differentiated NSC-34 motor neuron-like cells. Remarkably, ∼30% are described to localize in axons of different neuron types. In situ hybridization and immuno-fluorescence experiments performed on several candidates indicate that these mRNAs colocalize with the SMN protein in neurites and axons of differentiated NSC-34 cells. Moreover, they localize in cell processes in an SMN-dependent manner. Thus, low SMN levels might result in localization deficiencies of mRNAs required for axonogenesis. 相似文献
18.
19.
20.
The Wilms tumor protein is persistently associated with the nuclear matrix throughout the cell cycle
Dobashi Yoh Kudoh Tetsuhiro Ishidate Takao Shoji Mitsuhiko Toyoshima Kumao Akiyama Tetsu 《Molecular and cellular biochemistry》1997,171(1-2):121-126
In order to investigate the subnuclear interactions of the WTI gene product, nuclear fractionation analyses were performed with human osteosarcoma HOS and myelogenous leukemia K562 cells. The WT1 protein was tightly associated with the nucleus and was resistant to high-salt or derergent extraction and DNase I digestion. Both the expression level and stability of WT1 and its resistance to high salt and DNase I treatments remained constant during the cell cycle. In addition, human WT1 ectopically expressed in mouse NIH3T3 cells was also resistant to these treatments. These results suggest that WT1 functions in tight association with the nuclear matrix. 相似文献