首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

3.
Carnitine acyltransferases in rat liver peroxisomes   总被引:3,自引:0,他引:3  
Carnitine acyltransferase activities, as well as acetyl-CoA, octanyl-CoA, and palmityl-CoA hydrolase activities, were assayed in mitochondrial, peroxisomal, and endoplasmic reticulum fractions after isopycnic density sucrose gradient fractionation of rat liver homogenates. Both the forward and reverse assays show that carnitine acetyltransferase and carnitine octanyltransferase are associated with peroxisomes, mitochondria, and endoplasmic reticulum, while carnitine palmityltransferase was detected in mitochondria. Palmityl-CoA and octanyl-CoA hydrolase activities were found in all but the leading edge of the peroxisome peak of the gradient. The palmityl-CoA hydrolase in peroxisomal fractions was due to lysosomal contamination since the activity coincided with the lysosomal marker, acid phosphatase. The substrate specificity for carnitine octanyltransferase activity was maximum with medium-chain-length derivatives (about 20 nmol/ min/mg protein) and decreased as the acyl length increased until very low activity (<1 nmol/min/mg protein) was obtained with palmityl-CoA. When acyltransferases in peroxisomes were assayed by measuring acylcarnitine formation, nearly theoretical amounts of acetylcarnitine and octanylcarnitine were formed, but lesser quantities of 12 and 14 carbon acylcarnitines and very low amounts of palmitylcarnitine were detected. The presence of a broad spectrum of medium-chain and short-chain carnitine acyltransferases in peroxisomes is consistent with a role for carnitine for shuttling short-chain and medium-chain acyl residues out of peroxisomes. Carnitine acyltransferase activity was not detected in peroxisomes from spinach leaves.  相似文献   

4.
Effect of even- and odd-numbered saturated fatty acids, ranging from lauric to stearic acids, was studied on the de novo synthesis of glycerolipids in rat liver slices. For all fatty acids tested, a marked synthesis of saturated glycerolipids was observed except for phosphatidylethanolamine. When compared at the fixed concentration (2 mM), myristic acid caused a peak synthesis of saturated glycerolipids, and the presence of longer or shorter even- and odd-numbered fatty acids resulted in their lesser formation. The formation of saturated species of triacylglycerol and phosphatidylcholine closely followed the mode of synthesis of saturated diacylglycerols, though dipentadecanoyl-and dipalmitoylglycerols appeared to be less converted to the corresponding saturated triacylglycerols in comparison to the other saturated diacylglycerols. Very little formation of saturated diacylglycerols occurred when lauric, tridecanoic and stearic acids were tested. The majority of lauric and tridecanoic acids incorporated into saturated diacylglycerols was shown to be chain-elongated prior to esterification.  相似文献   

5.
The transport of glycerolipid intermediates, viz. palmitoyl dihydroxyacetone phosphate (DHAP) and lysophosphatidate from peroxisomes and their conversion to phosphatidate in endoplasmic reticulum (microsomes) were studied in cell-free systems. The lipids were biosynthesized from [32P]DHAP, palmitoyl-CoA, and freshly made rat liver peroxisomes and microsomes in the presence or absence of Mg2+, NADPH, and bovine serum albumin (BSA). After incubation, the soluble fraction and the membranes were separated, and the distribution of radioactive lipids in these fractions were determined. The results showed that palmitoyl-DHAP and lysophosphatidate were recovered in the supernatant when BSA was present or when BSA was absent, but Mg2+ was removed after incubation by chelation with EDTA (or ATP). At low optimum palmitoyl-CoA concentration or when palmitoyl-CoA was generated in peroxisomes, and in the absence of BSA, the biosynthesized keto ether and ester lipids and lysophosphatidate were similarly present in the supernatant. Phosphatidate, however, was always localized in the membranes. Further fractionation showed that phosphatidate was associated with the microsomes. The critical micellar concentrations of palmitoyl-DHAP and 1-palmitoyl-rac-glycerol 3-phosphate, under the incubation conditions used, were determined to be 58 and 70 microM, respectively. These results suggest that at physiological concentrations the biosynthesized lysolipids are water soluble, and therefore, a carrier protein is unnecessary for their transport. These lipids freely diffuse from peroxisomes to endoplasmic reticulum where they are converted to membrane-bound phosphatidate.  相似文献   

6.
The peroxisomal acyl/alkyl dihydroxyacetone-phosphate reductase (EC 1.1.1.101) was solubilized and purified 5500-fold from guinea pig liver. The enzyme could be solubilized by detergents only at high ionic strengths in presence of the cosubstrate NADPH. Peroxisomes, isolated from liver by a Nycodenz step density gradient centrifugation, were first treated with 0.2% Triton X-100 to remove the soluble and a large fraction of the membrane-bound proteins. The enzyme was solubilized from the resulting residue by 0.05% Triton X-100, 1 M KCl, 0.3 mM NADPH, and 2 mM dithiothreitol in Tris-HCl buffer (10 mM) at pH 7.5. The enzyme was further purified after precipitating it by dialyzing out the KCl and then resolubilized with 0.8% octyl glucoside in 1 M KCl (plus NADPH and dithiothreitol). The second solubilized enzyme was purified to homogeneity (370-fold from peroxisomes) by gel filtration in a Sepharose CL-6B column followed by affinity chromatography on an NADPH-agarose gel matrix. NADPH-agarose was prepared by reacting periodate-oxidized NADP+ to adipic acid dihydrazide-agarose and then reducing the immobilized NADP+ with NaBH4. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme showed a single homogeneous band with an apparent molecular weight of 60,000. The molecular weight of the native enzyme was estimated to be 75,000 by size exclusion chromatography. Amino acid analysis of the purified protein showed that hydrophobic amino acid comprised 27% of the molecule. The Km value of the purified enzyme for hexadecyldihydroxyacetone phosphate (DHAP) was 21 microM, and the Vmax value in the presence of 0.07 mM NADPH was 67 mumol/min/mg. The turnover number (Kcat), after correcting for the isotope effect of the cosubstrate NADP3H, was calculated to be 6,000 mol/min/mol of enzyme, assuming the enzyme has a molecular weight of 60,000. The purified enzyme also used palmitoyldihydroxyactone phosphate as a substrate (Km = 15.4 microM, and Vmax = 75 mumol/min/mg). Palmitoyl-DHAP competitively inhibited the reduction of hexadecyl-DHAP, indicating that the same enzyme catalyzes the reduction of both acyl-DHAP and alkyl-DHAP. NADH can substitute for NADPH, but the Km of the enzyme for NADH (1.7 mM) is much higher than that for NADPH (20 microM). The purified enzyme is competitively (against NADPH) inhibited by NADP+ and palmitoyl-CoA. The enzyme is stable on storage at 4 degrees C in the presence of NADPH and dithiothreitol.  相似文献   

7.
8.
While many estimates of the contribution of protein synthesis to metabolic rate exist for a variety of animals, most rely on theoretical costs of protein synthesis. The limitations of this approach are that theoretical costs depend upon variable estimates of ATP cost per peptide bond. In addition, they do not take into account the fact that there are protein-specific pre- and post-translational costs. By inhibiting, protein synthesis with cycloheximide and measuring the resultant decrease in oxygen consumption, we have measured the actual cost of protein synthesis and its contribution to metabolic rate in an in vitro system of tissue slices from Bufo marinus. Such measurements exist for endotherms, but there are few such measurements for ectotherms, and none have been done previously for amphibians. The cost of protein synthesis in liver slices from B. marinus was 7.32+/-1.19 mmol O2 x g(protein)(-1) (x +/- SE, n = 48) and protein synthesis accounted for 12% of the total metabolic rate of this tissue. This cost is comparable to values measured for other ectotherms although the contribution of protein synthesis to metabolic rate is at the lower end of the range of estimates for other ectotherms.  相似文献   

9.
  • 1.1. The route of glycerol incorporation into glycerolipids was measured by incubating rat liver slices with [l-14C]-glycerol and (2-3H]-glycerol.
  • 2.2. Approximately 75% of the incorporation was via the esterification of dihydroxyacetone phosphate with the remainder passing through the glycerol phosphate pathway.
  • 3.3. Clofenapate (1.25mM) inhibited lipid synthesis by about 78% and this resulted from a selective inhibition of dihydroxyacetone phosphate incorporation.
  • 4.4. A combined inhibition of glycerol phosphate oxidase and dihydroxyacetone phosphate acyltransferase is thought to be responsible for these observations.
  相似文献   

10.
1,3-Dioxolane series cationic lipids containing residues of aliphatic or heterocyclic nitrogenous bases were synthesized. The bases were attached to the glycerol backbone either directly (piperazine) or via a spacer group through a thioether bond.  相似文献   

11.
12.
Epiphytes and their contribution to canopy diversity   总被引:4,自引:0,他引:4  
About ten percent of all vascular plant species world-wide are epiphytes and they are almost exclusively found in tropical forests. Therefore, they constitute a large part of the global plant biodiversity (10% of all species), and in tropical countries represent up to 25% of all vascular plant species. Focusing on the differences between epiphytes in the strict sense or holo-epiphytes (non-parasitic plants that use other plants – usually trees – as growing sites all through their life-cycle) and hemi-epiphytes (half epiphytes which only spend part of their life as epiphytes until their aerial roots become connected to the ground), horizontal and vertical distribution patterns of both in relation to some of their ecological requirements are compared. Vertical ecological gradients (i.e., insolation and humidity differences from the forest floor to the canopy surface) are relevant for the composition of the holo- epiphytic vegetation. For hemi-epiphytes, however, ecological differences between distinct forest habitats (i.e., horizontal gradients) are relevant, but not primarily the canopy structure, as the individual host tree structure is more important. The scale-dependence of epiphyte diversity assessment (relatively small study areas for holo-epiphytes, large study areas for hemi-epiphytes) is mainly due to the striking differences in plant sizes and related mechanical and physiological requirements.  相似文献   

13.
Glycerolipid synthesis was studied by determining radioactive incorporation from either [1-14C] acetate or [U-14C] palmitate. Glycerolipid synthesis in adipocytes, mainly from exogenous palmitate, was preferentially directed to the formation of triacylglycerols, whereas in hepatocytes triacylglycerols and phospholipids were synthesized at similar rates. Insulin stimulated glycerolipid synthesis from acetate in both types of cells, being triacylglycerols more significantly increased than phospholipids. The most relevant difference was the finding that in adipocytes insulin strongly stimulated the formation of diglycerides, apparently from phosphatidate, whereas in hepatocytes insulin only slightly increased diglyceride levels. A possible role of diacylglycerol in insulin action in adipocytes, but not in hepatocytes, is also discussed.  相似文献   

14.
The age specificity of the regulation by thyroid hormones of 1,2-diacylglycerol production in rat liver has been studied. It was found that L-thyroxine-stimulation of the 3-month old rats liver cells resulted in a rapid rise in 1,2-diacylglycerol concentration in hepatocytes and simultaneous degradation of phospholipids. The endogenous phosphatidylcholine and phosphatidylethanolamine are the sources of 1,2-diacylglycerol in a liver. Under the action of hormone liver cells of young rats may product 1,2-diacylglycerol from exogenous 1-acyl, 2-[14C]arachidonyl-phosphatidylethanolamine. Thyroxine had no effect on de novo 1,2-diacylglycerols formation and their release from triacylglycerol. In liver cells of elder rats, 1,2-diacylglycerol and individual phospholipids content are unaffected by hormones.  相似文献   

15.
Enzymes associated with glycerolipid biosynthesis were examined in microsomal fractions of liver and adipose tissue obtained from swine of various ages. Generally, liver glycerophosphate acyltransferase, phosphatidate phosphohydrolase, diglyceride acyltransferase, and choline phosphotransferase activities were substantial at birth but increased 2- to 3-fold by day 14 postpartum, decreased at day 25, then increased at the oldest ages studied (up to 155 days postpartum). In adipose tissue, enzyme activities were low at birth and developed through day 25 in a pattern generally similar to that observed in liver. In contrast to liver, the adipose enzymes were depressed immediately postweaning (day 32) with subsequent recovery. The observed decline in adipose tissue enzyme activities expressed on a tissue basis at older ages was primarily the result of increased adipocyte size, since the activities expressed on a cell basis did not decline as rapidly. In both liver and adipose tissue, phosphatidate was the major glycerolipid synthesized by the microsomal glycerophosphate acyltransferase enzymes at all ages (generally greater than 75%). The ratio of neutral lipids to phospholipids produced by acylation of glycerophosphate was increased when a microsomal--cytosolic preparation was used as a source of enzyme in contrast to a microsomal preparation.  相似文献   

16.
Thio-palmitoylation is the post-translational addition of the 16-carbon fatty acid, palmitate, to the thiol side chain of cysteine residues by a labile thioester bond. Palmitoylation increases the lipophilicity of a protein resulting in dramatic changes in its subcellular distribution such as moving from the endoplasmic reticulum to the plasma membrane or in subtle changes like an increased affinity for cholesterol-rich lipid rafts in membranes. Palmitoylation is also dynamic, making it unique among post-translational protein lipid modifications. Discovering the molecular identity of palmitoyl acyltransferases (PATs) was a watershed event that dramatically accelerated the pace of discovery in the field. Likewise, there has been increased interest in palmitoylation partly because many of the genes encoding PATs have been linked to cancer and other diseases. Now, with a greater understanding of how palmitate is enzymatically attached to proteins, some of the most interesting questions include: What are the substrates of each PAT?; how does a PAT recognize and palmitoylate a substrate?; how are PATs regulated?; and, how is depalmitoylation regulated? The answers to these questions are beginning to unfold due to the recent development of novel assays as well as the expansion and refinement of existing assays. Our ability to understand palmitoylation and its importance to human health and disease is only as good as the methods we use to test our hypotheses. The continued development of methods with increased sensitivity and selectivity is critical to this venture.  相似文献   

17.
Hans Kleinig  Bodo Liedvogel 《Planta》1979,144(5):473-477
The coronae of Narcissus pseudonarcissus flowers incorporated [1-14C]acetate almost exclusively into the fatty acid moieties of glycerolipids. After a 4 h incubation, the newly synthesized acids were: stearate plus palmitate (50%); oleate (17%); linoleate (32%); and linolenate (0.5%). Phosphatidylcholine and diacylglycerol were the principal labelled lipids. In pulse experiments these acids were further desaturated, with time, to an appreciable extent and, concurrently, transferred essentially from phosphatidylcholine to diacylglycerol, diacylgalactosylglycerol, and diacylgalabiosylglycerol. The labelling of diacylgalactosylglycerol and diacylgalabiosylglycerol paralleled the appearance of linolenate. The distribution of labelled acids in phosphatidylcholine, diacylgalactosylglycerol, and diacylgalabiosylglycerol was very different. The results were compared with those obtained in vitro with isolated coronae chromoplasts and discussed in relation to current schemes of fatty acid and glycerolipid synthesis in plant cells.  相似文献   

18.
Cells contain limited and sequestered pools of Coenzyme A (CoA) that are essential for activating carboxylate metabolites. Some acyl-CoA esters have high metabolic and signalling impact, so control of CoA ester concentrations is important. This and transfer of the activated acyl moieties between cell compartments without wasting energy on futile cycles of hydrolysis and resynthesis is achieved through the carnitine system. The location, properties of and deficiencies in the carnitine acyltransferases are described in relation to their influence on the CoA pools in the cell and, hence, on metabolism. The protection of free CoA pools in disease states is achieved by excretion of acyl-carnitine so that carnitine supplementation is required where unwanted acyl groups build up, such as in some inherited disorders of fatty acid oxidation. Acetyl-carnitine improves cognition in the brain and propionyl-carnitine improves cardiac performance in heart disease and diabetes. The therapeutic effects of carnitine and its esters are discussed in relation to the integrative influence of the carnitine system across CoA pools. Recent evidence for sequestered pools of activated acetate for synthesis of malonyl-CoA, for the synthesis of polyunsaturated fatty acids and for the inhibition of carnitine palmitoyltransferase 1 to regulate fatty acid oxidation is reviewed.  相似文献   

19.
1. Male rats were fed for 14 days on diets containing (by wt.) 53% of starch, or on diets in which 20% of the starch was replaced by sucrose, corn oil or lard. 2. The hepatic activities of the microsomal glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase and choline phosphotransferase, and of the soluble phosphatidate phosphohydrolase, were measured. 3. The soluble phosphatidate phosphohydrolase activity was higher in those rats fed on lard than in those fed on the starch diet. Choline phosphotransferase activity was higher in the rats fed on corn oil than in those fed on the starch diet. 4. The rate of hepatic glycerolipid synthesis was measured in vivo 1 min after injection of [1,3-3H]glycerol and [1-14C]palmitate into the portal veins. 5. The relative rate of phosphatidylcholine synthesis in vivo was increased after feeding with corn oil and the higher specific activity of choline phosphotransferase may contribute to this result. The equivalent rate of triacylglycerol synthesis was increased by feeding with lard rather than corn oil, and the increased activity of phosphatidate phosphohydrolase may partly explain this. The latter changes probably contribute to the increased concentration of triacylglycerol which other authors have observed in the livers and sera of animals fed on saturated and monounsaturated fats.  相似文献   

20.
Abstract

Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号