首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Individual and topographical variation in the metabolic profiles of multiple human gastrointestinal tract (GIT) biopsies have been characterized using high-resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy and pattern recognition. Samples from antrum, duodenum, jejunum, ileum, and transverse colon were obtained from 8 male and 8 female participants. Each gut region generated a highly characteristic metabolic profile consistent with the varying structural and functional properties of the tissue at different longitudinal levels of the gut. The antral (stomach) mucosa contained higher levels of choline, glycogen, phosphorylethanolamine, and taurine than other gut regions. The spatially close regions of the duodenum and jejunum were equivalent in terms of their gross biochemical composition with high levels of choline, glutathione, glycerophosphocholine (GPC), and lipids relative to other gut regions. The ileal mucosa showed poor discrimination from the duodenum and jejunum tissues and generated strong amino acids signatures but had relative low GPC signals. The colon (large intestine) was high in acetate, glutamate, inositols, and lactate and low in creatine, GPC, and taurine compared to the small intestine. These longitudinal metabolic variations in the human GIT could be attributed to functional variations in energy metabolism, osmoregulation, gut microbial activity, and oxidative protection. This work indicates that 1H HRMAS NMR studies may be of value in analyzing local metabolic variation due to pathological processes in gut biopsies.  相似文献   

2.
We report details of metabolic profiles for small intestinal samples obtained using high-resolution magic-angle-spinning (HRMAS) (1)H NMR spectroscopy. Intact samples of jejunum and ileum from male Long Evans rats were analyzed on a 600 MHz spectrometer using standard one and two-dimensional (1)H NMR spectroscopic pulse sequences. The metabolic profiles of ileum and jejunum predominantly comprised a number of amino acids, lipids, glycerophosphocholine (GPC), choline, creatine, and ethanol, a number of carboxylic acids including acetate and lactate, and nucleoside bases including cytosine, isocytosine, and uracil. Principal component analysis (PCA) was applied to these NMR data to characterize the biochemical differences between jejunum and ileum tissues. Compared with ileum, jejunum contained higher levels of lipids, GPC, choline, lactate and creatinine, but lower levels of amino acids and acetate. In addition, the age dependence of the biochemical composition of intestinal tissues from young rats (15, 36 days and 3-4 months old) was studied. In general, levels of lipids, lactate, taurine and creatinine were positively correlated with age while amino acids and GPC decreased in the older age group. This study will provide a metabolic reference for further studies assessing the metabolic consequences of nutrition, stress and gut microbiota on intestinal composition.  相似文献   

3.
Principal component analysis (PCA) has been applied to three nuclear magnetic resonance (NMR) spectral editing methods, namely, the Carr-Purcell-Meiboom-Gill spin-echo, diffusion editing, and skyline projection of a two-dimensional J-resolved spectrum, obtained from high-resolution magic-angle spinning NMR spectroscopy of liver tissues, to distinguish between control and hydrazine-treated rats. The effects of the toxin on rat liver biochemistry were directly observed and characterized by depleted levels of liver glycogen, choline, taurine, trimethylamine N-oxide, and glucose and by elevated levels of lipids and alanine. The highly unsaturated omega-3-type fatty acid was observed for the first time in hydrazine-treated rat liver. The contributions of the metabolites to the separation of control from dosed liver tissues varied depending on the type of spectral editing method used. We have shown that subtle changes in the metabolic profiles can be selectively amplified using a metabonomics approach based on the different NMR spectral editing techniques in conjunction with PCA.  相似文献   

4.
High-resolution magic angle spinning (MAS) (1)H nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to monitor metabolic abnormalities within cells and intact tissues. Many toxicological insults and metabolic diseases affect subcellular organelles, particularly mitochondria. In this study high-resolution (1)H NMR spectroscopy was used to examine metabolic compartmentation between the cytosol and mitochondria in the rat heart to investigate whether biomarkers of mitochondrial dysfunction could be identified and further define the mitochondrial environment. High-resolution MAS spectra of mitochondria revealed NMR signals from lactate, alanine, taurine, choline, phosphocholine, creatine, glycine and lipids. However, spectra from mitochondrial extracts contained additional well-resolved resonances from valine, methionine, glutamine, acetoacetate, succinate, and aspartate, suggesting that a number of metabolites bound within the mitochondrial membranes occur in 'NMR invisible' environments. This effect was further investigated using diffusion-weighted measurements of water and NMR spectroscopy during state 2 and state 3 respiration. State 3 respiration caused a decrease in the resonance intensity of endogenous succinate compared with state 2 respiration, suggesting that coupled respiration may also modulate the NMR detection of metabolites within mitochondria.  相似文献   

5.
Clinical data have shown that survival rates vary considerably among brain tumor patients, according to the type and grade of the tumor. Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS (1)H NMRS) can provide important information on tumor biology and metabolism. These metabolic fingerprints can then be used for tumor classification and grading, with great potential value for tumor diagnosis. We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies, including two astrocytomas (grade I), 12 astrocytomas (grade II), eight anaplastic astrocytomas (grade III), three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS (1)H NMRS. The results were correlated with pathological features using multivariate data analysis, including principal component analysis (PCA). There were significant differences in the levels of N-acetyl-aspartate (NAA), creatine, myo-inositol, glycine and lactate between tumors of different grades (P<0.05). There were also significant differences in the ratios of NAA/creatine, lactate/creatine, myo-inositol/creatine, glycine/creatine, scyllo-inositol/creatine and alanine/creatine (P<0.05). A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%. HRMAS (1)H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.  相似文献   

6.
Apoptosis and necrosis need to be differentiated in order to distinguish drug-induced cell death from spontaneous cell death due to hypoxia. The ability to differentiate between these two modes of cell death, especially at an early stage in the process, could have a significant impact on accessing the outcome of anticancer drug therapy in the clinic. Nuclear magnetic resonance spectroscopy was used to distinguish apoptosis from necrosis in human cervical carcinoma (HeLa) cells. Apoptosis was induced by treatment with the topoisomerase II inhibitor etoposide, whereas necrosis was induced by the use of ethacrynic acid or cytochalasin B. We found that the intensity of the methylene resonance increases significantly as early as 6 h after the onset of apoptosis, but that no such changes occur during necrosis. The spectral intensity ratio of the methylene to methyl resonances also shows a high correlation with the percentage of apoptotic cells in the sample (r2=0.965, P<0.003).  相似文献   

7.
A very useful high-resolution magic-angle spinning (MAS) 1H NMR method for studying lipid dispersions is presented. The sample can be loaded into the spherical glass ampoule very easily, and a spinning speed of more than 10 kHz can be achieved without the problems of sample leakage or water loss. The line width at half height for the HDO peak is less than 1.5 Hz, and the method can be implemented by anyone who has access to a solid-state MAS NMR spectrometer. By using the spherical glass ampoule method we found two water peaks, which could be ascribed to bulk water outside of the multilamellar liposome (peak at high frequency) and interlamellar water (peak at low frequency), in both POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) liposomes. These are the first two examples of lipids without exchangeable protons that exhibit two distinct water resonances. The respective 1H spin-lattice relaxation times (T1) were measured, yielding values twice as long for bulk water as compared with interlamellar water. Both the chemical shift and spin relaxation results demonstrate the ability of MAS 1H NMR to rapidly monitor changes in physical properties that accompany water interactions with zwitterionic phosphatidylcholines.  相似文献   

8.
In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4–2.5 g of glucose; and 0.73–2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.  相似文献   

9.
Significant advances in understanding aging have been achieved through studying model organisms with extended healthy lifespans. Employing 1H NMR spectroscopy, we characterized the plasma metabolic phenotype (metabotype) of three long-lived murine models: 30% dietary restricted (DR), insulin receptor substrate 1 null (Irs1-/-), and Ames dwarf (Prop1df/df). A panel of metabolic differences were generated for each model relative to their controls, and subsequently, the three long-lived models were compared to one another. Concentrations of mobile very low density lipoproteins, trimethylamine, and choline were significantly decreased in the plasma of all three models. Metabolites including glucose, choline, glycerophosphocholine, and various lipids were significantly reduced, while acetoacetate, d-3-hydroxybutyrate and trimethylamine-N-oxide levels were increased in DR compared to ad libitum fed controls. Plasma lipids and glycerophosphocholine were also decreased in Irs1-/- mice compared to controls, as were methionine and citrate. In contrast, high density lipoproteins and glycerophosphocholine were increased in Ames dwarf mice, as were methionine and citrate. Pairwise comparisons indicated that differences existed between the metabotypes of the different long-lived mice models. Irs1-/- mice, for example, had elevated glucose, acetate, acetone, and creatine but lower methionine relative to DR mice and Ames dwarfs. Our study identified several potential candidate biomarkers directionally altered across all three models that may be predictive of longevity but also identified differences in the metabolic signatures. This comparative approach suggests that the metabolic networks underlying lifespan extension may not be exactly the same for each model of longevity and is consistent with multifactorial control of the aging process.  相似文献   

10.
Targeted profiling is a library-based method of using mathematically modeled reference spectra for quantification of metabolite concentrations in NMR mixture analysis. Metabolomics studies of biofluids, such as urine, represent a highly complex problem in this area, and for this reason targeted profiling of 1H NMR spectra can be hampered. A number of the issues relating to 1H NMR spectroscopy can be overcome using 13C{1H} NMR spectroscopy. In this work, a 13C{1H} NMR database was created using Chenomx NMR Suite, incorporating 120 metabolites. The 13C{1H} NMR database was standardized through the analysis of a series of metabolite solutions containing varying concentrations of 19 distinct metabolites, where the metabolite concentrations were varied across a range of values including biological ranges. Subsequently, the NMR spectra of urine samples were collected using 13C{1H} NMR spectroscopy and profiled using the 13C{1H} NMR library. In total, about 30 metabolites were conclusively identified and quantified in the urine samples using 13C{1H} NMR targeted profiling. The proton decoupling and larger spectral window provided easier identification and more accurate quantification for specific classes of metabolites, such as sugars and amino acids with overlap in the aliphatic region of the 1H NMR spectrum. We discuss potential application areas in which 13C{1H} NMR targeted profiling may be superior to 1H NMR targeted profiling.  相似文献   

11.
Microtubules (MTs) control cell replication, material transport and motion in eukaryotic cells, but MT role in several pathologies is still unknown. These functions are related to the MT physico-chemical properties and MT formation mode starting from tubulin molecules. This study describes a new method, based on the computer aided analysis of the electron paramagnetic resonance (EPR) spectra of selected spin probes to obtain structural and dynamical information on tubulins and MTs and the kinetics of MTs formation promoted by guanosine-5'-triphosphate (GTP). It was found that tubulin and MTs avoid radical quenching caused by ethylene glycol tetraacetic acid (EGTA). MT formation showed different kinetics as a function of tubulin concentration. At 5 mg/mL of tubulin, MTs were formed in 8 min. These results are also useful for getting information on MT-drug interactions.  相似文献   

12.
Sharpe S  Yau WM  Tycko R 《Biochemistry》2006,45(3):918-933
We report solid-state nuclear magnetic resonance (NMR) measurements on the peptide Vpu(1-40), comprising residues 1-40 of the 81-residue type 1 integral membrane protein Vpu encoded by the HIV-1 genome. On the basis of a combination of 13C and 15N NMR chemical shifts under magic-angle spinning (MAS), effects of local mobility on NMR signal intensities, site-specific MAS NMR line widths, and NMR-detected hydrogen-deuterium exchange, we develop a model for the structure and dynamics of the Vpu(1-40) monomer in phospholipid bilayer membranes. Our data are largely consistent with earlier structural studies of Vpu peptides by Opella and co-workers, in which solution NMR and solid-state NMR without MAS were used, but our data provide new information about local variations in the degree of mobility and structural order. In addition, our data indicate that the transmembrane alpha-helix of Vpu(1-40) extends beyond the hydrophobic core of the bilayer. We find no evidence for heterogeneity in the conformation and intermolecular contacts of the transmembrane alpha-helix, with the exception of two distinct chemical shifts observed for the C alpha and C beta atoms of A18 that may reflect distinct modes of helix-helix interaction. These results have possible implications for the supramolecular structure of Vpu oligomers that form cation-selective ion channels.  相似文献   

13.
An approach to metabolite fingerprinting of crude plant extracts that utilizes 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate statistics has been tested. Using ecotypes of Arabidopsis thaliana as experimental material, a method has been developed for the rapid analysis of unfractionated polar plant extracts, enabling the creation of reproducible metabolite fingerprints. These fingerprints could be readily stored and compared by a variety of chemometric methods. Comparison by principal component analysis using SIMCA-P allowed the generation of residual NMR spectra of the compounds that contributed significantly to the differences between samples. From these plots, conclusions were drawn with respect to the identity and relative levels of metabolites differing between samples.  相似文献   

14.
The steady-state kinetics of enzymes in tissues, cells, and concentrated lysates can be characterized using high-resolution nuclear magnetic resonance spectroscopy; this is possible because almost invariably there are differences in the spectra of substrates and products of a reaction and these spectra are obtainable even from optically opaque samples. We used 1H spin-echo NMR spectroscopy to study the hydrolysis of alpha-L-glutamyl-L-alanine by cytosolic peptidases of lysed human erythrocytes. Nonlinear regression of the integrated Michaelis-Menten expression onto the progress-curve data yielded, directly, estimates of Vmax and Km for the hydrolase; a procedure for analyzing progress curves in this manner was adapted and compared with a commonly used procedure which employs the Newton-Raphson algorithm. We also performed a sensitivity analysis of the integrated Michaelis-Menten expression; this yielded equations that indicate under what conditions estimates of Km and Vmax are most sensitive to variations in experimental observables. Specifically, we showed that the most accurate estimates of the steady-state parameters from analysis of progress curves are obtained when the initial substrate concentration is much greater than Km. Furthermore, estimates of these parameters obtained by such an analysis are most sensitive to data obtained when the reaction is 60-80% complete, having started with the highest practicable initial substrate concentration.  相似文献   

15.
Multicomponent high-resolution 1H and 13C NMR analysis has been employed for the purpose of detecting and quantifying a wide range of fatty acids (as triacylglycerols or otherwise) in encapsulated marine cod liver oil supplements. The 1H NMR technique provided quantitative data regarding the docosahexaenoic acid content of these products, which serves as a valuable index of fish oil quality, and a combination of both 1H and 13C spectroscopies permitted the analysis of many further components therein, including sn-1 monoacylglycerols, sn-1,2 and -1,3 diacylglycerol adducts, together with a range of minor components, such as trans-fatty acids, free glycerol and cholesterol, and added vitamins A and E. The identities of each of the above agents were confirmed by the application of two-dimensional 1H-1H spectroscopies. The NMR techniques employed also uniquely permitted determinations of the content of nonacylglycerol forms of highly unsaturated (or other) fatty acids in these products (i.e., ethyl esters), and therefore served as a means of distinguishing "natural" sources of cod liver oils from those subjected to chemical modification to and/or supplementation with synthetic derivatives such as ethyl docosahexaenoate or eicosopentaenoate. The analytical significance and putative health effects of the results acquired are discussed.  相似文献   

16.
The amino terminus of gap junction proteins, connexins, plays a fundamental role in voltage gating and ion permeation. We have previously shown with 1H NMR that the structure of the N-terminus of a representative connexin molecule contains a flexible turn around glycine 12 [P.E. Purnick, D.C. Benjamin, V.K. Verselis, T.A. Bargiello, T.L. Dowd, Arch. Biochem. Biophys. 381 (2000) 181-190] allowing the N-terminus to reside at the cytoplasmic entry of the channel forming a voltage-sensor. Previous functional studies or neuropathies have shown that the mutation G12Y and G12S form non-functional channels while functional channels are formed from G12P. Using 2D 1H NMR we show that similar to G12, the structure of the G12P mutant contains a more flexible turn around residue 12, whereas the G12S and G12Y mutants contain tighter, helical turns in this region. These results suggest an unconstrained turn is required around residue 12 to position the N-terminus within the pore allowing the formation of the cytoplasmic channel vestibule, which appears to be critical for proper channel function.  相似文献   

17.

Introduction

The high market value of saffron (Crocus sativus L.) has made it an attractive candidate for adulteration. Safflower (Carthamus tinctorius L.) and tartrazine are among the most common herbal and synthetic foreign materials that may be added to pure saffron for the purpose of adulteration. In spite of encouraging advances achieved in the identification of adulteration in saffron samples, the lack of a simple method with sufficient power for discrimination of pure high grade saffron from meticulously adulterated saffron samples persuaded us to perform this study.

Objectives

In this work, we show that 1H NMR spectroscopy together with chemometric multivariate data analysis methods can be used for the detection of adulteration in saffron.

Methods

Authentic Iranian saffron samples (n?=?20) and adulterated samples that were prepared by adding either different quantities of natural plant materials such as safflower, or synthetic dyes such as tartrazine or naphthol yellow to pure saffron (n?=?22) composed the training set. This training set was used to build multivariate Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) models. The predictive power of the PLS-DA model was validated by testing the model against an external dataset (n?=?13).

Results

PCA and PLS-DA models could both discriminate between the authentic and adulterated samples, and the external validation showed 100% sensitivity and specificity for predicting the authenticity of suspicious samples. Peaks specific to authentic and adulterated samples were also characterized. Proximity of samples with unknown adulteration status to the samples adulterated with known compounds in the PCA provided insight regarding the identity of the adulterant in the suspicious samples. Furthermore, the authentic samples could be distinguished based on their cultivation site.

Conclusion

The present study demonstrates that the application of 1H NMR spectroscopy coupled with multivariate data analysis is a suitable approach for detection of adulteration in saffron specimens. Outstanding sensitivity and specificity of the PLS-DA model in discriminating the authentic from adulterated samples in external validation confirmed the high predictive power of the model. The advantage of the present method is its power for detecting a wide spectrum of adulterants, ranging from synthetic dyes to herbal materials, in a single assay.
  相似文献   

18.
In this study, we hypothesized that the altered insulin and glucose levels in male pancreatic cancer patients reported in a recent JAMA article would result in an altered lipid profile in the blood of pancreatic cancer patients when compared to controls (Stolzenberg-Solomon et al., 2005). Proton nuclear magnetic resonance (NMR) spectra of human lipophilic plasma extracts were used in order to build partial least squares discriminant function (PLS-DF) models that classified samples as belonging to the pancreatic control group or to the pancreatic cancer group. The sensitivity, specificity, and overall accuracy of the PLS-DF models based on 4 bins were 96%, 88%, and 92%, respectively. The sensitivity, specificity, and overall accuracy of the PLS-DF models based on 5 bins were 98%, 94%, and 96%, respectively. The sensitivity, specificity and overall accuracy of both the 4-bin and 5-bin PLS-DF models dropped only 1–2% during leave-25%-out cross-validation testing. Mass spectrometric profiling of phospholipids in plasma found three phosphatidylinositols that were significantly lower in pancreatic cancer patients than in healthy controls. The cancer models are based upon changes in lipid profiles that may provide a more sensitive and accurate diagnosis of pancreatic cancer than current methods that are based upon a single biomarker.  相似文献   

19.
Summary The protein fusion technique was applied in the synthesis of an artificial dimer of ribonuclease H (305 residues). 1H NMR spectroscopy was used to analyze the structure of this dimer. Spectral profiles and pKa values of the histidine residues obtained using 1H NMR indicate that the dimer retains the secondary and tertiary structures of the intact monomer. Selective spin-lattice relaxation measurements suggest that the two monomeric units in the dimer are in tight contact. Furthermore, the 2D 1H NMR and paramagnetic relaxation filter results show that the two monomers bind together through interactions between the N- and C-terminal sites of the linked regions.  相似文献   

20.
O Lichtarge  O Jardetzky  C H Li 《Biochemistry》1987,26(18):5916-5925
The 1H NMR spectra of human beta-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75 degrees C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that beta-endorphin is a random coil in water but that it forms 50% alpha-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of alpha-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus [Li, C. H. (1982) Cell (Cambridge, Mass.) 31, 504-505]. Our findings suggest that these two receptors may specifically recognize alpha-helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号