首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

2.
Plant-derived cannabinoids, including Delta9-tetrahydrocannabinol (THC), induce apoptosis in leukemic cells, although the precise mechanism remains unclear. In the current study, we investigated the effect of THC on the upstream and downstream events that modulate the extracellular signal-regulated kinase (ERK) module of mitogen-activated protein kinase pathways primarily in human Jurkat leukemia T cells. The data showed that THC down-regulated Raf-1/mitogen-activated protein kinase/ERK kinase (MEK)/ERK/RSK pathway leading to translocation of Bad to mitochondria. THC also decreased the phosphorylation of Akt. However, no significant association of Bad translocation with phosphatidylinositol 3-kinase/Akt and protein kinase A signaling pathways was noted when treated cells were examined in relation to phosphorylation status of Bad by Western blot and localization of Bad to mitochondria by confocal analysis. Furthermore, THC treatment decreased the Bad phosphorylation at Ser(112) but failed to alter the level of phospho-Bad on site Ser(136) that has been reported to be associated with phosphatidylinositol 3-kinase/Akt signal pathway. Jurkat cells expressing a constitutively active MEK construct were found to be resistant to THC-mediated apoptosis and failed to exhibit decreased phospho-Bad on Ser(112) as well as Bad translocation to mitochondria. Finally, use of Bad small interfering RNA reduced the expression of Bad in Jurkat cells leading to increased resistance to THC-mediated apoptosis. Together, these data suggested that Raf-1/MEK/ERK/RSK-mediated Bad translocation played a critical role in THC-induced apoptosis in Jurkat cells.  相似文献   

3.
The Akt proto-oncogene links Ras to Pak and cell survival signals   总被引:10,自引:0,他引:10  
The Ras oncogene regulates cellular proliferation, differentiation, transformation, and survival through multiple downstream signals. Ras signals through its effector phosphoinositide 3 (PI3) kinase to the Pak protein kinase (p65(pak)), but the steps from Ras to Pak remain to be elucidated. PI3 kinase can stimulate the small G protein, Rac, a direct activator of Pak, as well as the Akt proto-oncogene, a serine-threonine protein kinase. We found that activated Akt stimulated Pak, whereas a dominant negative Akt inhibited Ras activation of Pak in transfection assays. Akt stimulation of Pak was not inhibited by dominant negative mutants of either Rac or Cdc42 suggesting that Akt activated Pak through a GTPase-independent mechanism. We also developed a novel cell-free system to study Ras activation of Pak. In this system Ras activated Pak only in the presence of a crude cell extract but failed to activate Pak when Akt was immunodepleted from the extract. Akt protects cells from apoptosis through phosphorylation of downstream targets such as the Bcl-2 family member, Bad. We found that activated Pak decreased apoptosis and increased phosphorylation of Bad, whereas dominant negative Pak increased apoptosis and decreased phosphorylation of Bad. These studies define a new oncogene-mediated cell survival signal.  相似文献   

4.
There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7- O -β- d -glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.  相似文献   

5.
The proapoptotic protein Bad is a key player in cell survival decisions, and is regulated post-translationally by several signaling networks. We expressed Bad in mouse embryonic fibroblasts to sensitize them to apoptosis, and tested cell lines derived from knock-out mice to establish the significance of the interaction between the adaptor protein Grb10 and the Raf-1 protein kinase in anti-apoptotic signaling pathways targeting Bad. When compared with wild-type cells, both Grb10 and Raf-1-deficient cells exhibit greatly enhanced sensitivity to apoptosis in response to Bad expression. Structure-function analysis demonstrates that, in this cellular model, the SH2, proline-rich, and pleckstrin homology domains of Grb10, as well as its Akt phosphorylation site and consequent binding by 14-3-3, are all necessary for its anti-apoptotic functions. As for Raf-1, its kinase activity, its ability to be phosphorylated by Src on Tyr-340/341 and the binding of its Ras-associated domain to the Grb10 SH2 domain are all necessary to promote cell survival. Silencing the expression of either Grb10 or Raf-1 by small interfering RNAs as well as mutagenesis of specific serine residues on Bad, coupled with signaling inhibitor studies, all indicate that Raf-1 and Grb10 are required for the ability of both the phosphatidylinositol 3-kinase/Akt and MAP kinase pathways to modulate the phosphorylation and inactivation of Bad. Because total Raf-1, ERK, and Akt kinase activities are not impaired in the absence of Grb10, we propose that this adapter protein creates a subpopulation of Raf-1 with specific anti-apoptotic activity.  相似文献   

6.
Mouse kidney proximal tubular epithelial (MK-PT) cells die by apoptosis over 7-10 days when deprived of all survival factors. We show here that withdrawal of all survival factors from MK-PT cells is associated with a progressive increase in the activity of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and a progressive decrease in phosphorylated Akt, a kinase critical to cell survival. Pharmacological inhibition of MEK1/2, the immediate upstream kinase for ERK1/2, not only prevented the decrease in phosphorylated Akt, but also prolonged MK-PT cell survival. Inhibition of ERK1/2, by itself, in the absence of any other known survival factors, was as potent as epidermal growth factor in maintaining MK-PT cell viability. ERK1/2 co-immunoprecipitated with Akt in a multimolecular assembly of signaling molecules, containing at a minimum ERK1/2, Akt, Rsk, and 3-phosphoinositide dependent kinase 1 (PDK1). We hypothesize that the kinase Rsk, whose activation requires phosphorylation by both ERK1/2 and PDK1, acts as a bridge bringing ERK1/2 into proximity with PDK1-associated Akt. Although a number of interactions between the Raf-MEK-ERK and PI3K-Akt signaling pathways have been described, our results are the first to show modulation of Akt activity by signaling events originating with ERK1/2. Spontaneous activation of ERK1/2 occurs via MEK1/2 and appears to depend on oxidant stress, accompanying induction of the default pathway of apoptosis. Together, these data suggest that the spontaneous activation of ERK1/2, in the absence of known extracellular stimuli, represents a previously unrecognized major regulatory pathway determining the fate of cells destined to die by the default pathway of apoptosis.  相似文献   

7.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.  相似文献   

8.
The small GTPase Rac1 has emerged as an important regulator of cell survival and apoptosis, but the mechanisms involved are not completely understood. In this report, constitutively active Rac1 is shown to stimulate the phosphorylation of the Bcl-2 family member Bad, thereby suppressing drug-induced caspase activation and apoptosis in human lymphoma cells. Rac1 activation leads to human Bad phosphorylation specifically at serine-75 (corresponding to murine serine-112) both in vivo and in vitro. Inhibition of constitutive and activated Rac1-induced Bad phosphorylation by a cell-permeable competitive peptide inhibitor representing this Bad phosphorylation site sensitizes lymphoma cells to drug-induced apoptosis. The data show further that endogenous protein kinase A is a primary catalyst of cellular Bad phosphorylation in response to Rac activation, while Akt is not involved. These findings define a mechanism by which active Rac1 promotes lymphoma cell survival and inhibits apoptosis in response to cancer chemotherapy drugs.  相似文献   

9.
Efforts in prevention and control of tuberculosis suffer from the lack of detailed knowledge of the mechanisms used by pathogenic mycobacteria for survival within host cell macrophages. The exploitation of host cell signaling pathways to the benefit of the pathogen is a phenomenon that deserves to be looked into in detail. We have tested the hypothesis that lipoarabinomannan (LAM) from the virulent species of Mycobacterium tuberculosis possesses the ability to modulate signaling pathways linked to cell survival. The Bcl-2 family member Bad is a proapoptotic protein. Phosphorylation of Bad promotes cell survival in many cell types. We demonstrate that man-LAM stimulates Bad phosphorylation in a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway in THP-1 cells. Man-LAM activated PI-3K. LAM-stimulated phosphorylation of Bad was abrogated in cells transfected with a dominant-negative mutant of PI-3K (Delta p85), indicating that activation of PI-3K is sufficient to trigger phosphorylation of Bad by LAM. Since phosphorylation of Bad occurred at serine 136, the target of the serine/threonine kinase Akt, the effect of LAM on Akt kinase activity was tested. Man-LAM could activate Akt as evidenced from phosphorylation of Akt at Thr(308) and by the phosphorylation of the exogenous substrate histone 2B. Akt activation was abrogated in cells transfected with Deltap85. The phosphorylation of Bad by man-LAM was abrogated in cells transfected with a kinase-dead mutant of Akt. These results establish that LAM-mediated Bad phosphorylation occurs in a PI-3K/Akt-dependent manner. It is therefore the first demonstration of the ability of a mycobacterial virulence factor to up-regulate a signaling pathway involved in cell survival. This is likely to be one of a number of virulence-associated mechanisms by which bacilli control host cell apoptosis.  相似文献   

10.
Regulation of rheumatoid synovial cell growth by ceramide   总被引:3,自引:0,他引:3  
Overgrowth of rheumatoid synoviocytes, which results in joint destruction, is due to impaired balance between cell proliferation and cell death (apoptosis). Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. We investigated the effects of ceramide on growth-promoting anti-apoptotic signals in rheumatoid synovial cells. Human synovial cells isolated from patients with rheumatoid arthritis (RA) were stimulated with platelet-derived growth factor (PDGF) in the presence or absence of C2-ceramide. The kinase activity of Akt, MEK, and ERK1/2 was analyzed in PDGF-stimulated synovial cells by Western blot analysis. Pretreatment with C2-ceramide completely inhibited PDGF-induced cell cycle progression of rheumatoid synovial cells. PDGF stimulation induced phosphorylation and activation of Akt, MEK, and ERK1/2 in rheumatoid synovial cells. C2-ceramide inhibited the activation of Akt, MEK and ERK1/2 in PDGF-stimulated synovial cells. Our data demonstrated that inhibition of anti-apoptotic kinases, such as Akt and ERK1/2, may play an important role in ceramide-mediated apoptosis of rheumatoid synovial cells.  相似文献   

11.
12.
Although aging is shown to be associated with decreased apoptosis and increased survival of cells in the colonic mucosa of Fischer 344 rats, the regulatory mechanisms are poorly understood. The current investigation examines the involvement of phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway in mediating the events of colonic mucosal cell survival during aging. We have observed that aging is associated with activation of PI3K/Akt signaling, as evidenced by the higher levels of phosphorylated forms of p85, the regulatory subunit of PI3K and of Akt in the proximal and distal colonic mucosa, of aged (21-23 mo) than in young (4-7 mo) rats. These increases are accompanied by a concomitant rise in phosphorylation of proapoptotic protein Bad, which is sequestered by the 14-3-3 family of proteins following phosphorylation by Akt, resulting in a reduction in nonphosphorylated Bad. The amount of antiapoptotic Bcl-xL bound to nonphosporylated Bad in the colonic mucosa is found to be substantially lower in aged than in young rats, resulting in a marked rise in the unbound/free form of Bcl-xL in the aging colon. The age-related activation of PI3K and the reduction in caspase-3 activity could be reversed by wortmannin, a specific inhibitor of PI3K. Increased levels of Bcl-xL and phosphorylated forms of Akt and Bad and reduction in caspase-3 activity were observed throughout the entire length of the colonic crypt of aged rats. We conclude that the constitutive activation of the PI3K/Akt-signaling pathway is partly responsible for the age-related increase in colonic mucosal cell survival. This is evident throughout the entire length of the colonic crypt.  相似文献   

13.
The ubiquitous vacuolar H(+)-ATPase, a multisubunit proton pump, is essential for intraorganellar acidification. Disruption of its function leads to disturbances of organelle function and cell death. Here, we report that overexpression of the B2 subunit of the H(+)-ATPase inhibits apoptosis. This antiapoptotic effect is not mediated by an increase in H(+)-ATPase activity but through activation of the Ras-mitogen-activated protein kinase (MAPK)-signaling pathway that results in the serine phosphorylation of Bad at residues 112 and 155. Increased Bad phosphorylation reduces its translocation to mitochondria, limits the release of mitochondrial cytochrome c and apoptosis-inducing factor and increases the resistance of the B2 overexpressing cells to apoptosis. Screening experiments of kinase inhibitors, including inhibitors of cAMP-activated protein kinase, protein kinase C, protein kinase B, (MAPK/extracellular signal-regulated (ERK) kinase) MEK and Ste-MEK1(13), a cell permeable ERK activation inhibitor peptide, revealed that the B2 subunit of H(+)-ATPase acts upstream of MEK activation in the MEK/ERK pathway to ameliorate apoptosis.  相似文献   

14.
Griseofulvin (GF), an oral antifungal agent, has been shown to exert antitumorigenesis effect through G2/M cell cycle arrest in colon cancer cells. But the underlying mechanisms remained obscure. The purpose of this study is to test the cytotoxic effect of GF on HL-60 and HT-29 cells and elucidate its underlying molecular pathways. Dose-dependent and time-course studies by flow cytometry demonstrated that 30 to 60 microM GF significantly induced G2/M arrest and to a less extend, apoptosis, in HL-60 cells. In contrast, only G2/M arrest was observed in HT-29 cells under similar condition. Pretreatment of 30 microM TPCK, a serine protease inhibitor, completely reversed GF-induced G2/M cell cycle arrest and apoptosis in HL-60 cells but not in HT-29 cells. The GF-induced G2/M arrest in HL-60 cells is reversible. Using EMSA and super-shift analysis, we demonstrated that GF stimulated NF-kappaB binding activity in HL-60 cells, which was completely inhibited by pretreatment of TPCK. Treatment of HL-60 with 30 microM GF activated JNK but not ERK or p38 MAPK and subsequently resulted in phosphorylation of Bcl-2. Pretreatment of TPCK to HL-60 cells blocked the GF-induced Bcl-2 phosphorylation but not JNK activation. Time course study demonstrated that activation of cdc-2 kinase activity by GF correlated with Bcl-2 phosphorylation. Taken together, our results suggest that activation of NF-kappaB pathway with cdc-2 activation and phosphorylation of Bcl-2 might be involved in G2/M cell cycle arrest in HL-60 cells.  相似文献   

15.
Endogenous cardiotonic glycosides bind to the inhibitory binding site of the plasma membrane sodium pump (Na+/K+-ATPase). Plasma levels of endogenous cardiotonic glycosides increase in several disease states, such as essential hypertension and uremia. Low concentrations of ouabain, which do not inhibit Na+/K+-ATPase, induce cell proliferation. The mechanisms of ouabain-mediated response remain unclear. Recently, we demonstrated that in opossum kidney (OK) proximal tubular cells, low concentrations of ouabain induce cell proliferation through phosphorylation of protein kinase B (Akt) in a calcium-dependent manner. In the present study, we identified ERK as an upstream kinase regulating Akt activation in ouabain-stimulated cells. Furthermore, we provide evidence that low concentrations of ouabain stimulate Na+/K+-ATPase-mediated 86Rb uptake in an Akt-, ERK-, and Src kinase-dependent manner. Ouabain-mediated ERK phosphorylation was inhibited by blockade of intracellular calcium release, calcium entry, tyrosine kinases, and phospholipase C. Pharmacological inhibition of phosphoinositide-3 kinase and Akt failed to inhibit ouabain-stimulated ERK phosphorylation. Ouabain-mediated Akt phosphorylation was inhibited by U0126, a MEK/ERK inhibitor, suggesting that ouabain-mediated Akt phosphorylation is dependent on ERK. In an in vitro kinase assay, active recombinant ERK phosphorylated recombinant Akt on Ser473. Moreover, transient transfection with constitutively active MEK1, an upstream regulator of ERK, increased Akt phosphorylation and activation, whereas overexpression of constitutively active Akt failed to stimulate ERK phosphorylation. Ouabain at low concentrations also promoted cell proliferation in an ERK-dependent manner. These findings suggest that ouabain-stimulated ERK phosphorylation is required for Akt phosphorylation on Ser473, cell proliferation, and stimulation of Na+/K+-ATPase-mediated 86Rb uptake in OK cells. opossum kidney cells; sodium/potassium adenosine triphosphatase; extracellular signal-regulated kinase; cell proliferation  相似文献   

16.
Glutamine, the most abundant amino acid in the bloodstream, is the preferred fuel source for enterocytes and plays a vital role in the maintenance of mucosal growth. The molecular mechanisms regulating the effects of glutamine on intestinal cell growth and survival are poorly understood. Here, we show that addition of glutamine (1 mmol/l) enhanced rat intestinal epithelial (RIE)-1 cell growth; conversely, glutamine deprivation increased apoptosis as noted by increased DNA fragmentation and caspase-3 activity. To delineate signaling pathways involved in the effects of glutamine on intestinal cells, we assessed activation of extracellular signal-related kinase (ERK), protein kinase D (PKD), and phosphatidylinositol 3-kinase (PI3K)/Akt, which are important pathways in cell growth and survival. Addition of glutamine activated ERK and PKD in RIE-1 cells after a period of glutamine starvation; inhibition of ERK, but not PKD, increased cell apoptosis. Conversely, glutamine starvation alone increased phosphorylated Akt; inhibition of Akt enhanced RIE-1 cell DNA fragmentation. The role of ERK was further delineated using RIE-1 cells stably transfected with an inducible Ras. Apoptosis was significantly increased following ERK inhibition, despite Ras activation. Taken together, these results identify a critical role for the ERK signaling pathways in glutamine-mediated intestinal homeostasis. Furthermore, activation of PI3K/Akt during periods of glutamine deprivation likely occurs as a protective mechanism to limit apoptosis associated with cellular stress. Importantly, our findings provide novel mechanistic insights into the antiapoptotic effects of glutamine in the intestine.  相似文献   

17.
To explore the effect and mechanism of quercetin on proliferation and apoptosis of leukemia cells, and provide a theoretical basis for its clinical application. HL-60 leukemia cell lines was treated with different dose quercetin, the proliferation activity of leukemia cells was assessed by MTT method; the morphological changes of apoptosis of HL-60 cells, including nuclear condensation and DNA fragmentation, were observed by Hoechst 33258 fluorescence staining, the apoptosis rate and caspase 2,3 activation were assessed by flow cytometry, and the cell signal pathway including phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (pAkt), Bcl-2, Bax were detected by western blotting. Quercetin could significantly decrease the proliferation activity of HL-60 cells through the blockade of G(0)/G(1) phase, and induce the apoptosis of HL-60 cells in a time- and dose-dependent manner. Quercetin caused leukemia cells apoptosis by decreasing the protein expression of PI3K and Bax, the inhibitory phosphorylation of Akt, the decreased levels of Bcl-2 protein and increased activations of caspase-2 and -3, and increased poly(ADP-ribose) polymerase cleavage. Our results indicate that the apoptotic processes caused by quercetin are mediated by the decrease of pAkt and Bcl-2 levels, the increase of Bax level, and the activation of caspase families in HL-60 cells.  相似文献   

18.
Two novel, modified thymidine nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), trigger reactive oxygen species (ROS) generation and DNA damage and thereby induce caspase-mediated apoptosis in human HL-60 cells; however, the mechanism leading to caspase activation and apoptotic cell death remains unclear. Therefore, we investigated the signaling molecules involved in nucleoside derivative-induced caspase activation and apoptosis in HL-60 cells. PhSe-T/MeSe-T treatment activated two mitogen-activated protein kinases (MAPKs), extracellular-receptor kinase (ERK) and p38, and induced the phosphorylation of two downstream targets of p38, ATF-2 and MAPKAPK2. In addition, the selective p38 inhibitor SB203580 suppressed PhSe-T/MeSe-T-induced apoptosis and activation of caspase-3, -9, -8, and -2, whereas the jun amino-terminal kinase (JNK) inhibitor SP600125 and the ERK inhibitor PD98059 had no effect. SB203580 and an ROS scavenger, tiron, inhibited PhSe-T/MeSe-T-induced histone H2AX phosphorylation, which is a DNA damage marker. Moreover, tiron inhibited PhSe-T/MeSe-T-induced phosphorylation of p38 and enhanced p38 MAP kinase activity, indicating a role for ROS in PhSe-T/MeSe-T-induced p38 activation. Taken together, our results suggest that PhSe-T/MeSe-T-induced apoptosis is mediated by the p38 pathway and that p38 serves as a link between ROS generation and DNA damage/caspase activation in HL-60 cells.  相似文献   

19.
The luteinizing hormone-releasing hormone (LHRH) receptor is a G protein-coupled receptor involved in the synthesis and release of pituitary gonadotropins and in the proliferation and apoptosis of pituitary cells. Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor that has a mitogenic effect on pituitary cells. In this study, we used the alphaT3 gonadotrope cell line as a model to characterize the IGF-1R signaling pathways and to investigate whether this receptor interacts with the LHRH cascade. We found that IGF-1 activated the IGF-1R, insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase, and Akt in a time-dependent manner in alphaT3 cells. The MAPK (ERK1/2, p38, and JNK) pathways were only weakly activated by IGF-1. In contrast, LHRH strongly stimulated the MAPK pathways but had no effect on Akt activation. Cotreatment with IGF-1 and LHRH had various effects on these signaling pathways. 1) It strongly increased IGF-1-induced tyrosine phosphorylation of IRS-1 and IRS-1-associated phosphatidylinositol 3-kinase through activation of the epidermal growth factor receptor. 2) It had an additive effect on ERK1/2 activation without modifying the phosphorylation of p38 and JNK1/2. 3) It strongly reduced IGF-1 activation of Akt. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and cell cycle analysis revealed that, in addition to having an additive effect on ERK1/2 activation, cotreatment with IGF-1 and LHRH also had an additive effect on cell proliferation. The LHRH-induced inhibition of Akt stimulated by IGF-1 was completely blocked by Safingol, a protein kinase C (PKC) alpha-specific inhibitor, and by a dominant negative form of PKCalpha. Finally, we showed that the inhibitory effect of LHRH on IGF-1-induced PKCalpha-mediated Akt activation was associated with a marked reduction in Bad phosphorylation and a substantial decrease in the ability of IGF-1 to rescue alphaT3 cells from apoptosis induced by serum starvation. Our results demonstrate for the first time that several interactions take place between IGF-1 and LHRH receptors in gonadotrope cells.  相似文献   

20.
Our previous study demonstrated that norepinephrine (NE) induces endothelial apoptosis mainly through down-regulation of Bcl-2 protein and activation of the β-adrenergic and caspase-2 pathways. However, whether reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) are involved in this signal transduction remains unknown. Endothelial cells cultured from neonatal rat heart were treated with 100 μM NE. Proteins of MAPKs and Bcl-2 family were assayed by Western blotting. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling assay. ROS was analyzed with flow cytometry. Caspase activity was measured using specific fluorogenic substrates. Treatment with NE increased intracellular ROS level and extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 phosphorylation. Whereas the phosphorylated form of Akt was decreased. The NE-induced apoptosis was abrogated by SP600125 (a specific inhibitor of JNK). Antioxidants such as vitamin C and N-acetyl cysteine inhibited NE-induced ROS production, JNK phosphorylation, caspase activation and apoptosis. Exogenously added superoxide dismutase or catalase markedly diminished NE-induced ROS production and cell death. In conclusions, our study is the first report documenting that NE induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway. Antioxidants may be useful in the prevention and management of NE-mediated endothelial apoptosis during heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号