首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

2.
Microhabitat specialists offer tractable systems for studying the role of habitat in determining species’ distribution and abundance patterns. While factors underlying the distribution patterns of these specialists have been studied for decades, few papers have considered factors influencing both the microhabitat and the inhabitant. On the Belizean barrier reef, the obligate sponge-dwelling goby Elacatinus lori inhabits the yellow tube sponge Aplysina fistularis. We used field data and multivariate analyses to simultaneously consider factors influencing sponge and goby distributions. Sponges were non-randomly distributed across the reef with density peaking at a depth of 10–20 m. Sponge morphology also varied with depth: sponges tended to be larger and have fewer tubes with increasing depth. Knowing these patterns of sponge distribution and morphology, we considered how they influenced the distribution of two categories of gobies: residents (≥18 mm SL) and settlers (<18 mm SL). Maximum tube length, number of sponge tubes, and depth were significant predictors of resident distribution. Residents were most abundant in large sponges with multiple tubes, and were virtually absent from sponges shallower than 10 m. Similarly, maximum tube length and number of sponge tubes were significant predictors of settler distribution, with settlers most abundant in large sponges with multiple tubes. The presence or absence of residents in a sponge was not a significant predictor of settler distribution. These results provide us with a clear understanding of where sponges and gobies are found on the reef and support the hypothesis that microhabitat characteristics are good predictors of fish abundance for species that are tightly linked to microhabitat.  相似文献   

3.
 Habitat association and depth distribution of two sympatric coral reef groupers of the genus Cephalopholis were examined at Rota, Mariana Islands. The two species are similar in body size, morphology, and social organization. In this study, they differed in their association with habitat and microhabitat and in depth distribution. Cephalopholis spiloparaea occurred on the reef slope between the reef terrace and deep sand flats at depths between 15 and 26 m. This species was associated mainly with Porites rus corals. Cephalopholis urodeta occurred largely on the upper reef terrace at 1–12 m. This species was associated mainly with coral pavement. The observed pattern of segregation might be the result of competitive or noncompetitive interactions or of phylogenetic constraints, but the exact mechanism or combination thereof remains unknown. Received: May 30, 2000 / Revised: September 5, 2001 / Accepted: October 25, 2001  相似文献   

4.
N. Tolimieri 《Oecologia》1995,102(1):52-63
Populations of fishes on coral reefs are replenished by the settlement of pelagic larvae to demersal populations. Recruitment varies spatially and temporally and can exert strong effects on the dynamics of reef fish populations. This study examined the effect of microhabitat characteristics on small-scale and large-scale recruitment variation in the three-spot damselfish, Stegastes planifrons (Cuvier). Comparison of 0.25-m2 quadrats occupied by three-spots with randomly sampled null quadrats showed that three-spots quadrats contained a higher percent cover of the coral Montastrea annularis than would be expected at random. Manipulative experiments on three types of 1.0-m2 patch reefs (living M. annularis, dead Porites Porites and dead Acropora palmata) patch reefs on showed that this non-random distribution was established by microhabitat choice during settlement and not by differential post-settlement survival. The presence of conspecific juveniles did not affect settlement. Recruitment was monitored at nine sites on three islands over 3 years. Recruitment showed no consistent pattern in the relative levels of recruitment among sites. Similarly, no consistent relationship emerged between recruitment levels and microhabitat characteristics at the nine sites. For example, at this large scale, the percent cover of M. annularis explained variation in recruitment in only 1 out of 3 years. These results suggest that small-scale recruitment patterns are influenced by microhabitat choice during settlement, but that these habitat effects do not scale up to influence large-scale variation in recruitment.  相似文献   

5.
A massive Porites microatoll generally has three types of microhabitat at the top, side, and base of the microatoll. The purpose of the present study was to analyze microhabitat associations of reef fish on microatolls to determine whether habitat characteristics play an important role in the structuring of reef fish assemblages in a patchy habitat. We also investigated temporal stability of reef fish assemblage structures over a period of 17 months to determine whether fish assemblage structures vary in a random manner. The results of correspondence analysis indicated species-specific habitat associations for pomacentrids (five species) and labrids (seven species). The degree of temporal stability of fish assemblage structures, calculated by Piankas index, was relatively high in a large-sized microatoll (0.503–0.831: 3.6m in diameter), in which microhabitat associations of fishes were clearly observed. The present study suggests that a microhabitat association is one of the important factors responsible for organization of reef fish assemblages in a microatoll.  相似文献   

6.
Life-history studies provide a global framework for comparison of fish species responses and trade-offs facing ecological and environmental constrains. A broad comparison among fishes’ early growth and condition traits is performed in order to determine ecological patterns of early development regarding latitudinal distribution, habitat use and life-history strategies. Based on Winemiller and Rose (1992) classification of life-history strategies, data on early growth and condition indices of 46 fish species worldwide was analysed. Available information on fishes’ early features, namely first year length percentage (relative to species maximum theoretical length), age at maturation and Fulton’s condition index (K), provided a good segregation of species by latitudinal distribution and habitat use, and evidenced the categories of the three-endpoint model. Higher larvae and juvenile growth rates and condition indices (K, mean RNA–DNA ratios and protein contents) were associated with tropical and temperate fish species that occur in complex or variable habitats (respectively coral reefs and estuaries). These species selected for the opportunistic and periodic strategies, investing highly in rapid growth in order to increase survival probability to counter high mortality rates during early stages or unstable habitat conditions. Later age at maturation, slower larvae and juvenile growth as well as lower mean condition indices were consistent with fish species from more stable or predictable environments, as polar regions and freshwater habitats, which selected for the equilibrium strategy. Nonetheless, differences in energy allocation strategies during early stages were not observed, evidencing the scarcity of available data regarding condition indices and/or the importance of integrating life-history intermediate strategies. Future research into condition indices and other physiological processes, for a broader set of species and for a wider latitudinal and habitat range including seasonal variability (particularly for species from tropical and polar regions), is essential to better understand or test current theories of species ecological patterns. The use of direct quantitative measures of young fishes’ metabolic investment and fitness constitutes a new approach for life-history studies, and should be fundamental for predicting species’ responses to acute environmental or human constrains, especially in a global climate change scenario that is expected to affect distribution and abundance of fish species worldwide.  相似文献   

7.
Many estimates of ‘marine protected area (MPA) effects’ may be confounded by environmental heterogeneity between MPA and ‘Control’ sites. However, the magnitude and extent of such confounding is generally unknown. Here, the effects of microhabitat availability on estimates of MPA performance were explicitly explored. Abundance of a reef fish species, Ctenochaetus striatus (Quoy & Gaimard, 1825), available microhabitat, and, microhabitat preference for C. striatus within six ‘Ra’ui’ (traditionally managed MPAs) and six paired ‘Control’ sites on the island of Rarotonga, Cook Islands, were estimated. Response ratios accounting for available microhabitat qualitatively modified inferences of Ra’ui effectiveness for two of the six Ra’ui when contrasted with response ratios not accounting for available microhabitat. However, analysis of covariance (ANCOVA) indicated that available microhabitat accounted for significant variation in C. striatus densities between Ra’ui and Control, rather than protection. Our results suggest that adjusting for microhabitat availability may significantly alter our perception of the effects of Ra’ui on C. striatus. Our framework, in concert with our ANCOVA models, provides a stronger assessment of MPA effects. Further, we conclude that metrics of environmental heterogeneity should be incorporated into future assessments of MPA effectiveness, with our work describing one potential framework to accomplish this.  相似文献   

8.
High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton’s body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton’s body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton’s body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure.  相似文献   

9.
D. J. Booth  Mark A. Hixon 《Oecologia》1999,121(3):364-368
The supply of larvae is a major determinant of population and community structure in coral reef fishes. However, spatial and temporal variation in condition (i.e. quality) of potential recruits, as well as their density (i.e. quantity), may influence survival and growth of juveniles. We conducted an experiment to test whether recent feeding history could affect growth, condition and post-recruitment survival in a Caribbean damselfish, Stegastes partitus. Fish were collected soon after settlement, and fed either low or high rations in aquaria for 7 days. Fish fed the high ration grew faster in aquaria and were in a better condition (higher total lipids and Fulton’s condition factor) at the end of the feeding period. Subsequently, we released 50 fish in 25 pairs (one fish subjected to low rations, the other to high rations) on a Bahamian coral reef and monitored survival for 10 days. Survivorship of high-ration fish was double that of low-ration fish (80 vs 40% over 10 days). However, low-ration fish that survived 10 days were of similar condition and grew at similar rates to high-ration fish, suggesting that short-term ration differences may not persist in surviving fish. Laboratory experiments showed that low-ration fish were taken by piscivorous fishes before high-ration fish, indicating that differential predation may account for survival differences. This study highlights the potential of feeding history and condition to affect the relationship between patterns of larval arrival at reefs, and subsequent juvenile and adult population densities. Received: 1 March 1999 / Accepted: 15 July 1999  相似文献   

10.
Synopsis We tested depth selection by different sizes of mottled sculpin, Cottus bairdi, in a southern Appalachian stream. Field observations indicated that, during one hour periods, both small (<50 mm SL) and large (≥55 mm SL) individuals move within an area less than 0.50 m2. Individuals of both sizes, placed in field enclosures, preferred deep microhabitat. When large fish were placed in cages with small fish, small fish initially spent more time in slope and shallow microhabitats. Average interfish distances were not correlated with their absolute size differences, suggesting C. bairdi interactions may involve both predation and competition. In streams, size-related differences in microhabitat depth may result more from intraspecific interactions than from size-specific depth preferences.  相似文献   

11.
This study focuses on the seasonal accumulation and depletion of somatic energy in the Atlantic silverside (Menidia menidia), an annual estuarine fish. Previous research revealed that northern silversides are subject to strong size-dependent winter mortality, while southern fish suffer no appreciable winter mortality. To examine whether there was geographic differentiation in allocation strategies, we compared temporal patterns of energy storage and utilization among three populations along this gradient in seasonality. The comparative design used monthly or biweekly samples of fish collected in the wild, as well as samples of fish from each population reared in a common environment, where genetic differences can be clarified. Somatic energy stores were quantified via gravimetric analysis of neutral storage lipids and lean tissue. Analysis revealed that small individuals maintained relatively low levels of lipid reserves, which may account for their lower survival in winter. Wild fish in the north rapidly accumulated large somatic reserves, which were depleted over the winter and then increased again during the subsequent spring breeding season. In wild southern fish, relatively small reserves accumulated slowly until breeding commenced in the spring. The common-environment comparison of somatic storage patterns revealed a genetic basis for among-population differences in reserve accumulation rates, but no differences in the amount of reserves stored. We conclude that the overwinter depletion of somatic reserves has a significant selective impact on energy accumulation and allocation strategies in seasonal environments. Received: 1 November 1995 / Accepted: 13 September 1996  相似文献   

12.
Mass spawning of corals provides a large seasonal pulse of high-energy prey that potentially benefits reef fish that are capable of capturing and digesting coral propagules. This study examines the range of fish species that consume coral propagules and also tests whether reef fish experience a significant increase in physiological condition when feeding on coral propagules. Thirty-six species of diurnal reef fish were seen to consume coral propagules released during mass coral spawning. Stomach content analyses of three reef fish species (Pomacentrus moluccensis, Abudefduf whitleyi, and Caesio cunning) revealed that both P. moluccensis and A. whitleyi feed almost exclusively on coral propagules during mass coral spawning. Fish feeding extensively on coral propagules also amassed considerable lipid stores, which could greatly improve the quality and survivorship of their progeny. In contrast, C. cunning consumed only very small quantities of coral propagules, and showed no detectable change in lipid stores during the course of the study. This study provides the first direct evidence that reef fish benefit from mass coral spawning, and reveals a potentially significant trophic link between scleractinian corals and reef fish. Accepted: 9 June 2000  相似文献   

13.
In contrast to the terrestrial environment, where the use of landscape analyses has been clearly demonstrated, the influence of landscape composition and configuration on the abundance and spatial distribution of marine organisms remains poorly understood. Development of this area of marine research has been limited by the lack of accurate benthic habitat maps, particularly for marine environments deeper than can be penetrated by optical remote sensing (<10 m). However, the recent availability of detailed (1:25 000) and accurate habitat maps derived from hydroacoustic surveys of deeper marine waters has redressed this situation. The aim of this research was to establish the strength and significance of derived landscape composition and configuration indices on the demersal fish assemblage structure and spatial distribution. A combination of depth and 6 landscape measures were found to explain 34.8% of the variation in the fish assemblage. Depth contributed the highest percentage of the variance explained, accounting for 23.7%. Distance to reef was the most important landscape index explaining 7.1% of the variability, followed by total length of edge environment (the interface between different benthic substrates) explaining 1.5%. Species responsible for driving the structure of the fish assemblage were also examined and found to respond not only to the proximity of reef but also to the configuration of the reef. For example, Parika scaber and Pseudolabrus psittaculus characterised more heterogeneous landscapes offering clusters of small interconnected patches of reef with a lot of edge environment, whilst juvenile Trachyurus novaezelandiae and Platycephalus caeruleopunctatus preferred more homogeneous landscapes offering little reef or edge environment. This research demonstrated that a broad scale landscape analysis, employing indices of landscape composition and configuration, is important for understanding demersal fish assemblage structure and spatial distribution.  相似文献   

14.

Environmental clines such as latitude and depth that limit species’ distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems (~30–150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish (Stegastes partitus) ranging from shallow shelf (SS, <10 m) and deep shelf (DS, 20–30 m) habitats in the Florida Keys to mesophotic depths (MP, 60–70 m) at Pulley Ridge on the west Florida Shelf. Diet, behavior, and potential energetic trade-offs differed across study sites, but did not always have a monotonic relationship with depth, suggesting that some drivers of habitat suitability are decoupled from depth and may be linked with geographic location or the local environment. Feeding and diet composition differed among depths with the highest consumption of annelids, lowest ingestion of appendicularians, and the lowest gut fullness in DS habitats where predator densities were highest and fish exhibited risk-averse behavior that may restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  相似文献   

15.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

16.
  1. Determining the appropriate measurement scale to assess habitat variables is critical for ecologists assessing biological or ecological conditions. Depth, velocity, substrate, woody debris and other fish cover variables occur on both reach and microhabitat scales, and fish habitat associations with these variables may be scale-dependent. The aim of this work was to better understand the importance of scale for fish–habitat associations with these variables in a framework consistent with environmental filtering and to test the hypothesis that habitat variable importance is scale-dependent.
  2. I used prepositioned areal electrofishing in wadeable streams of the Delaware River basin to evaluate the associations of fish with the same variables summarised on different reach and microhabitat scales. The importance of scale for fish–habitat associations was assessed using two approaches that approximate an environmental filtering framework: variance partitioning with (1) ordination and (2) generalised linear mixed models.
  3. Variables on both the reach and microhabitat scales explained a significant fraction of the total variation in fish community composition (p < 0.05). Variation decomposition of reach- and microhabitat-scale effects revealed 20.2% and 2.0% of all variation were due uniquely to reach and microhabitat scales, respectively. Measures of coarseness, embeddedness, amount of riffle and areal coverage of five fish cover variables were significant explanatory variables of community composition at the reach scale only (p < 0.05). Velocity and mesohabitat (amount or presence of riffle) were the only two habitat features that were significant explanatory variables of fish community composition at both the reach and microhabitat scales (p < 0.05). Individual models of species occurrence revealed similar patterns as seen with analyses of community composition.
  4. For many fishes, habitat features quantified at the reach scale were more explanatory than at the microhabitat scale. Longnose dace (Rhinichthys cataractae) were more dependent upon microhabitat variables than reach-scale variables, relative to other fishes. Mean velocity at the reach scale was the most important explanatory variable for explaining fish community composition and indicated support for the concept of environmental filtering at the reach and microhabitat scales.
  5. Few studies of fish occurrence have incorporated a study design and analytical framework that approximates the hierarchical nature of habitat. This study identifies important scales and predictors, demonstrates the importance of a multiscale approach, and provides support for the environmental filtering concept at the reach and microhabitat scales. These findings will allow ecologists to better account for scale-dependent habitat associations and justify the use of fish habitat associations on reach and microhabitat scales for assessing biotic integrity, restoration and conservation of fishes.
  相似文献   

17.

Mesophotic coral ecosystems (MCEs) represent the lowest depth distribution inhabited by many coral reef-associated organisms. Research on fishes associated with MCEs is sparse, leading to a critical lack of knowledge of how reef fish found at mesophotic depths may vary from their shallow reef conspecifics. We investigated intraspecific variability in body condition and growth of three Hawaiian endemics collected from shallow, photic reefs (5–33 m deep) and MCEs (40–75 m) throughout the Hawaiian Archipelago and Johnston Atoll: the detritivorous goldring surgeonfish, Ctenochaetus strigosus, and the planktivorous threespot chromis, Chromis verater, and Hawaiian dascyllus, Dascyllus albisella. Estimates of body condition and size-at-age varied between shallow and mesophotic depths; however, these demographic differences were outweighed by the magnitude of variability found across the latitudinal gradient of locations sampled within the Central Pacific. Body condition and maximum body size were lowest in samples collected from shallow and mesophotic Johnston Atoll sites, with no difference occurring between depths. Samples from the Northwestern Hawaiian Islands tended to have the highest body condition and reached the largest body sizes, with differences between shallow and mesophotic sites highly variable among species. The findings of this study support newly emerging research demonstrating intraspecific variability in the life history of coral-reef fish species whose distributions span shallow and mesophotic reefs. This suggests not only that the conservation and fisheries management should take into consideration differences in the life histories of reef-fish populations across spatial scales, but also that information derived from studies of shallow fishes be applied with caution to conspecific populations in mesophotic coral environments.

  相似文献   

18.
19.
Quantitative surveys of sessile benthos and fish populations associated with reef habitats across a 15–50 m depth gradient were performed by direct diver observations using rebreathers at Isla Desecheo, Puerto Rico. Statistically significant differences between depths were found for total live coral, total coral species, total benthic algae, total sponges and abiotic cover. Live coral cover was higher at the mid-shelf (20 m) and shelf-edge (25 m) stations, whereas benthic algae and sponges were the dominant sessile-benthic assemblage at mesophotic stations below 25 m. Marked shifts in the community structure of corals and benthic algae were observed across the depth gradient. A total of 119 diurnal, non-cryptic fish species were observed across the depth gradient, including 80 species distributed among 7,841 individuals counted within belt-transects. Fish species richness was positively correlated with live coral cover. However, the relationship between total fish abundance and live coral was weak. Abundance of several numerically dominant fish species varied independently from live coral cover and appeared to be more influenced by depth and/or habitat type. Statistically significant differences in the rank order of abundance of fish species at euphotic vs mesophotic stations were detected. A small assemblage of reef fishes that included the cherubfish, Centropyge argi, sunshine chromis, Chromis insolata, greenblotch parrotfish, Sparisoma atomarium, yellowcheek wrasse, Halichoeres cyanocephalus, sargassum triggerfish, Xanthichthys ringens, and the longsnout butterflyfish, Chaetodon aculeatus was most abundant or only present from stations deeper than 30 m, and thus appear to be indicator species of mesophotic habitats.  相似文献   

20.
Corallivorous gastropods of the genus Drupella are known for population outbreaks throughout the Indo-Pacific region. Despite their potential to destroy wide areas of coral reef, prey preferences have never been analyzed with respect to prey availability, and juvenile ecology and food selectivity remain largely unknown. Here, the influence of water depth, coral abundance, colony shape, prey species, and intraspecific attraction among snails on distribution patterns, prey selection, and microhabitat use of D. cornus was studied in the northern Red Sea. Special emphasis was put on ontogenetic differences. The snails were most abundant in the shallowest reef zone (1 m depth). Adults were associated with several substrates and coral growth forms, whereas juveniles were highly cryptic and restricted to live branching corals. The genus Acropora was significantly preferred over other acroporid and pocilloporid corals. As revealed by resource selection ratios, Acropora acuminata was preferred by juveniles, A. selago by adults. In aquarium experiments, intraspecific attraction was high among both life stages. Overall, significant differences in juvenile and adult microhabitat and prey use suggest that juveniles have more specific habitat requirements, and indicate ecological impacts on coral communities different from that of adults. Prey preferences seem to depend on both coral genus and colony shape. Acropora corals provide the best combination of food and shelter and therefore determine distribution patterns of D. cornus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号